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Preface

“And Now for Something Completely Different...”

This book explores ways to apply the Python programming language in common ap-
plication domains and realistically scaled tasks. It’s about what you can do with the
language once you’ve mastered its fundamentals.

This book assumes you are relatively new to each of the application domains it covers—
GUIs, the Internet, databases, systems programming, and so on—and presents each
from the ground up, in tutorial fashion. Along the way, it focuses on commonly used
tools and libraries, rather than language fundamentals. The net result is a resource that
provides readers with an in-depth understanding of Python’s roles in practical, real-
world programming work.

As a subtheme, this book also explores Python’s relevance as a software development
tool—a role that many would classify as well beyond those typically associated with
“scripting.” In fact, many of this book’s examples are scaled specifically for this pur-
pose; among these, we’ll incrementally develop email clients that top out at thousands
of lines of code. Programming at this full scale will always be challenging work, but
we’ll find that it’s also substantially quicker and easier when done with Python.

This Fourth Edition has been updated to present the language, libraries, and practice
of Python 3.X. Specifically, its examples use Python 3.1—the most recent version of
Python at the time of writing—and its major examples were tested successfully under
the third alpha release of Python 3.2 just prior to publication, but they reflect the version
of the language common to the entire 3.X line. This edition has also been reorganized
in ways that both streamline some of its former material and allow for coverage of newly
emerged tools and topics.

Because this edition’s readership will include both newcomers as well as prior edition
veterans, [ want to use this Preface to expand on this book’s purpose and scope before
we jump into code.
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About This Book

This book is a tutorial introduction to using Python in common application domains
and tasks. It teaches how to apply Python for system administration, GUIs, and the
Web, and explores its roles in networking, databases, frontend scripting layers, text
processing, and more. Although the Python language is used along the way, this book’s
focus is on application to real-world tasks instead of language fundamentals.

This Book's Ecosystem

Because of its scope, this book is designed to work best as the second of a two-volume
set, and to be supplemented by a third. Most importantly, this book is an applications
programming follow-up to the core language book Learning Python, whose subjects
are officially prerequisite material here. Here’s how the three books are related:

* Learning Python covers the fundamentals of Python programming in depth. It fo-
cuses on the core Python language, and its topics are prerequisite to this book.

* Programming Python, this book, covers the application of Python to real-world
programming tasks. It focuses on libraries and tools, and it assumes you already
know Python fundamentals.

* Python Pocket Reference provides a quick reference to details not listed exhaustively
here. It doesn’t teach much, but it allows you to look up details fast.

In some sense, this book is to application programming what Learning Python is to the
core language—a gradual tutorial, which makes almost no assumptions about your
background and presents each topic from the ground up. By studying this book’s cov-
erage of Web basics, for example, you’ll be equipped to build simple websites, and you
will be able to make sense of more advanced frameworks and tools as your needs evolve.
GUIs are similarly taught incrementally, from basic to advanced.

In addition, this book is designed to be supplemented by the quick-reference book
Python Pocket Reference, which provides the small details finessed here and serves as
a resource for looking up the fine points. That book is reference only, and is largely
void of both examples and narrative, but it serves to augment and complement both
Learning Python’s fundamentals and Programming Python’s applications. Because its
current Fourth Edition gives both Python 2.X and 3.X versions of the tools it covers,
that book also serves as a resource for readers transitioning between the two Python
lines (more on this in a moment).”

* Disclosure: I am the author of all three books mentioned in this section, which affords me the luxury of tightly
controlling their scopes in order to avoid overlap. It also means that as an author, I try to avoid commenting
on the many other Python books available, some of which are very good and may cover topics not addressed
in any of my own books. Please see the Web for other Python resources. All three of my books reflect my 13
years on the Python training trail and stem from the original Programming Python written back in 1995 <insert
grizzled prospector photo here>.
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What This Book Is Not

Because of the scopes carved out by the related books I just mentioned, this book’s
scope follows two explicit constraints:

* Tt does not cover Python language fundamentals

* Itis not intended as a language reference

The former of these constraints reflects the fact that core language topics are the ex-
clusive domain of Learning Python, and I encourage you to consult that book before
tackling this one if you are completely new to the Python language, as its topics are
assumed here. Some language techniques are shown by example in this book too, of
course, and the larger examples here illustrate how core concepts come together into
realistic programs. OOP, for example, is often best sampled in the context of the larger
programs we’ll write here. Officially, though, this book assumes you already know
enough Python fundamentals to understand its example code. Our focus here is mostly
on libraries and tools; please see other resources if the basic code we’ll use in that role
is unclear.

The latter of the two constraints listed above reflects what has been a common mis-
conception about this book over the years (indeed, this book might have been better
titled Applying Python had we been more clairvoyant in 1995). I want to make this as
clear as I can: this is not a reference book. It is a tutorial. Although you can hunt for
some details using the index and table of contents, this book is not designed for that
purpose. Instead, Python Pocket Reference provides the sort of quick reference to details
that you’ll find useful once you start writing nontrivial code on your own. There are
other reference-focused resources available, including other books and Python’s own
reference manuals set. Here, the goal is a gradual tutorial that teaches you how to apply
Python to common tasks but does not document minute details exhaustively.

About This Fourth Edition

If this is the first edition of this book you’ve seen, you’re probably less interested in
recent changes, and you should feel free to skip ahead past this section. For readers of
prior editions, though, this Fourth Edition of this book has changed in three important
ways:

* It’s been updated to cover Python 3.X (only).

* It’s been slimmed down to sharpen its focus and make room for new topics.

* It’s been updated for newly emerged topics and tools in the Python world.
The first of these is probably the most significant—this edition employs the Python 3.X
language, its version of the standard library, and the common practice of its users. To

better explain how this and the other two changes take shape in this edition, though,
I need to fill in a few more details.
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Specific Changes in This Edition

Because the prior versions of this book were widely read, here is a quick rundown of
some of the most prominent specific changes in this edition:

Its existing material was shortened to allow for new topics
The prior edition of this book was also a 1600-page volume, which didn’t allow
much room for covering new Python topics (Python 3.X’s Unicode orientation
alone implies much new material). Luckily, recent changes in the Python world
have allowed us to pare down some less critical existing material this time around,
in order to free up room for new coverage.

Depth was not sacrificed in the process, of course, and this is still just as substantial
a book as before. In general, though, avoiding new growth was a primary goal of
this update; many of the other specific changes and removals I'll mention below
were made, in part, to help accommodate new topics.

It covers 3.X (only)
This book’s examples and narrative have been updated to reflect and use the 3.X
version of Python. Python 2.X is no longer supported here, except where 3.X and
2.X Pythons overlap. Although the overlap is large enough to make this of use to
2 X readers too, this is now officially a 3.X-only text.

This turns out to be a major factor behind the lack of growth in this edition. By
restricting our scope to Python 3.X—the incompatible successor to the Python 2.X
line, and considered to be Python’s future—we were able to avoid doubling the
coverage size in places where the two Python lines differ. This version limit is es-
pecially important in a book like this that is largely about more advanced examples,
which can be listed in only one version’s style.

For readers who still straddle the 2.X and 3.X worlds, I'll say more about Python
3.X changes later in this Preface. Probably the most significant 3.X-related change
described there is the new Internationalization support in PyEdit and PyMailGUI,;
though 2. X had Unicode too, its new prominence in 3.X almost forces such systems
to rethink their former ASCII-only ways.

Inclusion of newly emerged libraries and tools

Since the prior edition, a variety of new libraries and tools have either come online
or risen in popularity, and they get new mention here. This includes new standard
library tools such as subprocess (in Chapters 2 and 3) and multiprocessing (in
Chapter 5), as well as new third-party web frameworks and ORM database toolkits.
Most of these are not covered extensively (many popular third-party extensions
are complex systems in their own right and are best covered by dedicated books),
but they are at the least introduced in summary form here.

For example, Python 3.1’s new tkinter.ttk Tk themed widget set shows up in
Chapter 7 now, but only briefly; as a rule, this edition prefers to mention such
extensions in passing, rather than attempting to show you code without adequate
explanation.
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This Preface was tightened up

I’ve removed all the instructions for using and running program examples. Instead,
please consult the README file in the examples distribution for example usage details.
Moreover, most of the original acknowledgments are gone here because they are
redundant with those in Learning Python; since that book is now considered a
prerequisite, duplication of material here is unwarranted. A description of book
contents was also deleted; please see the table of contents for a preview of this
book’s structure.

The initial Python overview chapter is gone
I’ve removed the prior edition’s “managerial summary” chapter which introduced
Python’s strong points, prominent users, philosophies, and so on. Proselytizing
does play an important role in a field that sometimes asks the “why” questions less
often than it should. Indeed, if advocacy had not been part of the Python experi-
ence, we’d probably all be using Perl or shell languages today!

However, this chapter has now grown completely redundant with a similar chapter
in Learning Python. Since that book is a precursor to this one, I opted to not devote
space to restating “Pythonista” propaganda here (fun as it may be). Instead, this
book assumes you already know why Python is worth using, and we jump right
into applying it here.
The conclusion’s postscripts are gone

This book’s conclusion comes from the first edition, and it is now 15 years old.
Naturally, some of it reflects the Python mindset from that period more than that
of today. For example, its focus on Python’s role in hybrid applications seemed
more important in 1995 than in 2010; in today’s much larger Python world, most
Python users never deal with linked-in C code at all.

In prior editions, I added postscripts for each edition to elaborate on and update
the ideas presented in the book’s conclusion. These postscripts are gone now, re-
placed by a short note at the start of the conclusion. T opted to keep the conclusion
itself, though, because it’s still relevant to many readers and bears some historic
value. Well, that, plus the jokes...

The forewords are gone

For reasons similar to those of the prior two points, the accumulated forewords
from the prior three editions were also dropped this time around. You can read all
about Python creator Guido van Rossum’s historical rationale for Python’s evolu-
tion in numerous places on the Web, if you are so inclined. If you are interested in
how Python has changed technically over the years, see also the “What’s New”
documents that are part of the Python standard manuals set (available at http:/
www.python.org/doc, and installed alongside Python on Windows and other
platforms).

The C integration part has been reduced to just one chapter
I’ve reduced the C extending and embedding part’s material to one shorter chapter
at the end of the tools part, which briefly introduces the core concepts in this
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domain. Only a fraction of Python users must care about linking in C libraries
today, and those who do already have the skills required to read the larger and
more compete example of integration present in the source code of Python itself.
There is still enough to hint at possibilities here, but vast amounts of C code have
been cut, in deference to the better examples you’ll find in Python’s own code.

The systems programming part was condensed and reworked

The former two larger system examples chapters have been merged into one shorter
one, with new or greatly rewritten examples. In fact, this part (Part II) was probably
overhauled the most of any part in the book. It incorporates new tools such as
subprocess and multiprocessing, introduces sockets earlier, and removes dated
topics and examples still lingering from prior editions. Frankly, a few of the file-
oriented examples here dated back to the 1990s, and were overdue for a general
refresh. The initial chapter in this part was also split into two to make its material
easier to read (shell context, including streams, gets its own chapter now), and a
few large program listings here (including the auto-configuring launcher scripts)
are now external suggested reading.

Some larger examples were removed (but are available in the examples distribution)
Along the same lines, two of the larger GUI examples in the prior edition, PyTree
and PyForm, have been removed. Instead, their updated code is available in the
book’s examples distribution package, as suggested supplemental reading. You’ll
still find many larger examples covered and listed in this edition—including both
GUI- and Web-based renderings of full-featured email clients, along with image
viewers, calculators, clocks, Unicode-aware text editors, drawing programs, re-
gression test scripts, and more. However, because the code of the examples re-
moved doesn’tadd much to what is already covered, and because they were already
largely self-study examples anyhow, I've made them optional and external to the
printed text in this edition.

The advanced Internet topics chapter was replaced by brief summaries

I’ve cut the advanced Internet topics chapter completely, leaving only simple sum-
maries at the start of the Internet part (intentionally mirroring the GUI option
summaries at the start of the GUI part). This includes prior coverage for tools such
as the ZOPE web framework, COM, Windows active scripting and ASP,
HTMLgen, Python Server Pages (PSP), Jython, and the now very dated Grail sys-
tem. Some of these systems still receive honorable mention in the summaries, but
none are now presented in any sort of detail. Summaries of new tools (including
many of those listed in the following paragraph) were added to this set, but again,
in brief fashion with no example code.

Despite authors’ best attempts to foresee the future, the Web domain evolves faster
than books like this can. For instance, Web frameworks like Django, Google’s App
Engine, TurboGears, pylons, and web2py are now popular alternatives to ZOPE.
Similarly, the .NET framework supersedes much of COM on Windows;
IronPython now provides the same type of integration for .NET as Jython did first
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for Java; and active scripting has been eclipsed by AJAX and JavaScript-oriented
frameworks on the client such as Flex, Silverlight, and pyjamas (generally known
today as rich Internet applications, RIAs). Culture shift aside, the examples for-
merly presented in this category were by themselves also insufficient to either teach
or do justice to the subject tools.

Rather than including incomplete (and nearly useless) coverage of tools that are
prone to both evolution and demise during this edition’s expected lifespan, [ now
provide only brief overviews of the current hot topics in the Web domain, and I
encourage readers to search the Web for more details. More to the point, the goal
of the book you’re reading is to impart the sort of in-depth knowledge of Internet
and Web fundamentals that will allow you to use more advanced systems well,
when you’re ready to take the leap.

One exception here: the XML material of this prior chapter was spared and relo-
cated in expanded form to the text processing chapter (where it probably belonged
allalong). In arelated vein, the coverage of ZOPE’s ZODB object-oriented database
was retained, although it was shortened radically to allow new coverage of ORMs
such as SQLObject and SQLAlchemy (again, in overview form).

Use of tools available for 3.X today
At this writing, Python 3.Xis still in its adoption phase, and some of the third-party
tools that this book formerly employed in its examples are still available in Python
2.X form only. To work around this temporary flux, I’'ve changed some code to
use alternatives that already support 3.X today.

The most notable of these is the SQL database section—this now uses the in-
process SQLite library, which is a standard part of Python and already in 3.X form,
rather than the enterprise-level MySQL interface which is still at 2.X today. Luckily,
the Python portable database API allows scripts to work largely the same on both,
so this is a minor pragmatic sacrifice.

Of special note, the PIL extension used to display JPEGs in the GUI part was ported
to 3.1 just when it was needed for this update, thanks to Fredrik Lundh. It’s still
not officially released in 3.X form as I submit the final draft of this book in July
2010, but it should be soon, and 3.X patches are provided in the book examples
package as a temporary measure.

Advanced core language topics are not covered here
More advanced Python language tools such as descriptors, properties, decorators,
metaclasses, and Unicode text processing basics are all part of the core Python
language. Because of that, they are covered in the Fourth Edition of Learning Py-
thon, not here. For example, Unicode text and the changes it implies for files,
filenames, sockets, and much more are discussed as encountered here, but the
fundamentals of Unicode itself are not presented in complete depth. Some of the
topics in this category are arguably application-level related too (or at least of in-
terest to tool builders and API developers in general), but their coverage in Learning
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Python allows us to avoid additional growth here. Please see that book for more
on these subjects.

Other random bits

Naturally, there were additional smaller changes made along the way. For example,
tkinter’s grid method is used instead of pack for layout of most input forms, because
it yields a more consistent layout on platforms where label font sizes don’t match
up with entry widget height (including on a Windows 7 netbook laptop, this edi-
tion’s development machine). There’s also new material scattered throughout, in-
cluding a new exploration of redirecting streams to sockets in the Internet part; a
new threaded and Unicode-aware “grep” dialog and process-wide change tests on
exit in the PyEdit example; and other things you are probably better off uncovering
along the way than reading further about in this Preface.

I also finally replaced some remaining “#” comment blocks at the top of source
files with docstrings (even, for consistency, in scripts not meant to be imported,
though some “#” lines are retained in larger examples to offset the text); changed
a few lingering “while 1” to “while True”; use += more often; and cleaned up a few
other cases of now-dated coding patterns. Old habits may die hard, but such up-
dates make the examples both more functional and more representative of com-
mon practice today.

Although new topics were added, all told, four chapters were cut outright (the non-
technical introduction, one of the system example chapters, advanced Internet topics,
and one integration chapter), some additional examples and material were trimmed
(including PyForm and PyTree), and focus was deliberately restricted to Python 3.X
and application fundamentals to conserve space.

What's Left, Then?

The combined effect of all the changes just outlined is that this edition more concisely
and sharply reflects its core focus—that of a tutorial introduction to ways to apply
Python in common programming domains. Nevertheless, as you can tell from this
book’s page count, it is still a substantial and in-depth book, designed to be a first step
on your path to mastering realistic applications of Python.

Contrary to recent trends (and at some risk of being branded a heretic), I firmly believe
that the job of books like this one is to elevate their readers, not pander to them. Low-
ering the intellectual bar does a disservice both to readers and to the fields in which
they hope to work. While that means you won’t find as many cartoons in this book as
in some, this book also won’t insult you by emphasizing entertainment at the expense
of technical depth. Instead, the goal of my books is to impart sophisticated concepts
in a satisfying and substantive way and to equip you with the tools you’ll need in the
real world of software development.
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There are many types of learners, of course, and no one book can ever satisfy every
possible audience. In fact, that’s why the original version of this book later became two,
with language basics delegated to Learning Python. Moreover, one can make a case for
a distinction between programmers, who must acquire deep software development
skills, and scripters, who do not. For some, a rudimentary knowledge of programming
may be enough to leverage a system or library that solves the problem at hand. That s,
until their coding forays start encroaching on the realm of full-scale software engineer-
ing—a threshold that can inspire disappointment at worst, but a better appreciation
of the challenging nature of this field at best.

No matter which camp you’re from, it’s important to understand this book’s intent up-
front. If you’re looking for a shortcut to proficiency that’s light on technical content,
you probably won’t be happy with this book (or the software field in general). If your
goal is to master programming Python well, though, and have some fun along the way,
you’ll probably find this book to be an important piece of your learning experience.

At the end of the day, learning to program well is much more demanding than implied
by some contemporary media. If you’re willing to invest the focus and effort required,
though, you’ll find that it’s also much more rewarding. This is especially true for those
who equip themselves for the journey with a programmer-friendly tool like Python.
While no book or class can turn you into a Python “Master of the Universe” by itself,
this book’s goal is to help you get there, by shortening your start-up time and providing
a solid foundation in Python’s most common application domains.

Python 3.X Impacts on This Book

As mentioned, this edition now covers Python 3.X only. Python 3.Xis an incompatible
version of the language. The 3.X core language itself is very similar to Python 2.X, but
there are substantial changes in both the language and its many standard libraries.
Although some readers with no prior background in 2.X may be able to bypass the
differences, the changes had a big impact on the content of this edition. For the still
very large existing Python 2.X user base, this section documents the most noteworthy
changes in this category.

Ifyou're interested in 2.X differences, I also suggest finding a copy of the Fourth Edition
of the book Python Pocket Reference described earlier. That book gives both 2.X and
3.X versions of core language structures, built-in functions and exceptions, and many
of the standard library modules and tools used in this book. Though not designed to
be a reference or version translator per se, the Fourth Edition of Learning Python sim-
ilarly covers both 2.X and 3.X, and as stated, is prerequisite material to this book. The
goal of this 3.X-only Programming Python is not to abandon the current vast 2.X user
base in favor of a still imaginary one for 3.X; it is to help readers with the migration,
and avoid doubling the size of an already massive book.
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Specific 3.X Changes

Luckily, many of the 2.X/3.X differences that impact this book’s presentation are trivial.
For instance, the tkinter GUI toolkit, used extensively in this book, is shown under its
3.X tkinter name and package structure only; its 2.X Tkinter module incarnation is
not described. This mostly boils down to different import statements, but only their
Python 3 versions are given here. Similarly, to satisfy 3.X module naming conventions,
2.X’s anydbm, Queue, thread, StringI0.StringIO, and urllib.open become dbm, queue,
_thread, io.StringIO, and urllib.request.urlopen, respectively, in both Python 3.X
and this edition. Other tools are similarly renamed.

On the other hand, 3.X implies broader idiomatic changes which are, of course, more
radical. For example, Python 3.X’s new Unicode awareness has inspired fully Interna-
tionalized versions of the PyEdit text editor and the PyMailGUI email client examples
in this edition (more on this in a moment). Furthermore: the replacement of
os.popen2 with the subprocess module required new examples; the demise of
os.path.walk in favor of os.walk allowed some examples to be trimmed; the new Uni-
code and binary dichotomy of files and strings impacted a host of additional existing
examples and material; and new modules such as multiprocessing offer new options
covered in this edition.

Beyond such library changes, core language changes in Python 3 are also reflected in
this book’s example code. For instance, changes to 2.X’s print, raw_input, keys,
has_key, map, and apply all required changes here. In addition, 3.X’s new package-
relative import model impacted a few examples including mailtools and expression
parsers, and its different flavor of division forced some minor math updates in canvas-
based GUI examples such as PyClock, PyDraw, and PyPhoto.

Of note here, 1 did not change all % string formatting expressions to use the new
str.format, since both forms are supported in Python 3.1, and it now appears that they
will be either indefinitely or forever. In fact, per a “grep” we’ll build and run in Chap-
ter 11’s PyEdit example, it seems that this expression still appears over 3,000 times in
Python 3.1’s own library code. Since I cannot predict Python evolution completely, see
the first chapter for more on this if it ever requires updates in an unexpected future.

Also because of the 3.X scope, this edition is unable to use some third-party packages
that are still in 2.X form only, as described earlier. This includes the leading MySQL
interface, ZODB, PyCrypto, and others; as also mentioned, PIL was ported to 3.1 for
use in this book, but this required a special patch and an official 3.X release is still
presently pending. Many of these may be available in 3.X form by the time you read
these words, assuming the Python world can either break some of the current cross
dependencies in 2.X packages or adopt new 3.X-only tools.
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Language Versus Library: Unicode

As a book focused on applications instead of core language fundamentals, language
changes are not always obtrusive here. Indeed, in retrospect the book Learning Py-
thon may have been affected by 3.X core language changes more than this book. In
most cases here, more example changes were probably made in the name of clarity or
functionality than in support of 3.X itself.

On the other hand, Python 3.X does impact much code, and the impacts can be subtle
at times. Readers with Python 2.X backgrounds will find that while 3.X core language
changes are often simple to apply, updates required for changes in the 3.X standard
library are sometimes more far reaching,.

Chief among these, Python 3.X’s Unicode strings have had broad ramifications. Let’s
be honest: to people who have spent their lives in an ASCII world, the impacts of the
3.X Unicode model can be downright aggravating at times! As we’ll see in this book, it
affects file content; file names; pipe descriptors; sockets; text in GUIs; Internet proto-
cols such as FTP and email; CGI scripts; and even some persistence tools. For better
or worse, once we reach the world of applications programming as covered in this book,
Unicode is no longer an optional topic for many or most Python 3.X programmers.

Of course, Unicode arguably never should have been entirely optional for many pro-
grammers in the first place. Indeed, we’ll find that things that may have appeared to
work in 2.X never really did—treating text as raw byte strings can mask issues such as
comparison results across encodings (see the grep utility of Chapter 11°s PyEdit for a
prime example of code that should fail in the face of Unicode mismatches). Python 3.X
elevates such issues to potentially every programmer’s panorama.

Still, porting nontrivial code to 3.X is not at all an insurmountable task. Moreover,
many readers of this edition have the luxury of approaching Python 3.X as their first
Python and need not deal with existing 2.X code. If this is your case, you’ll find Python
3.X to be a robust and widely applicable scripting and programming language, which
addresses head-on many issues that once lurked in the shadows in 2.X.

Python 3.1 Limitations: Email, CGI

There’s one exception that I should call out here because of its impact on major book
examples. In order to make its code relevant to the widest possible audience, this book’s
major examples are related to Internet email and have much new support in this edition
for Internationalization and Unicode in this domain. Chapter 14’s PyMailGUI and
Chapter 16’s PyMailCGI, and all the prior examples they reuse, fall into this category.
This includes the PyEdit text editor—now Unicode-aware for files, display, and greps.

On this front, there is both proverbial good news and bad. The good news is that in
the end, we will be able to develop the feature-rich and fully Internationalized PyMail-
GUI email client in this book, using the email package as it currently exists. This will
include support for arbitrary encodings in both text content and message headers, for
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both viewing and composing messages. The less happy news is that this will come at
some cost in workaround complexity in Python 3.1.

Unfortunately, as we’ll learn in Chapter 13, the email package in Python 3.1 has a
number of issues related to str/bytes combinations in Python 3.X. For example, there’s
no simple way to guess the encoding needed to convert mail bytes returned by the
poplib module to the str expected by the email parser. Moreover, the email package
is currently broken altogether for some types of messages, and it has uneven or type-
specific support for some others.

This situation appears to be temporary. Some of the issues encountered in this book
are already scheduled to be repaired (in fact, one such fix in 3.2 required a last-minute
patch to one of this book’s 3.1 workarounds in Chapter 13). Furthermore, a new version
of email is being developed to accommodate the 3.X Unicode/bytes dichotomy more
accurately, but it won’t materialize until long after this book is published, and it might
be backward-incompatible with the current package’s API, much like Python 3. X itself.
Because of that, this book both codes workarounds and makes some assumption along
the way, but please watch its website (described ahead) for required updates in future
Pythons. One upside here is that the dilemmas posed neatly reflect those common in
realistic programming—an underlying theme of this text.

These issues in the email package are also inherited by the cgi module for CGI file
uploads, which are in large measure broken in 3.1. CGI scripts are a basic technique
eclipsed by many web frameworks today, but they still serve as an entry-level way to
learn Web fundamentals and are still at the heart of many larger toolkits. A future fix
seems likely for this 3.1 flaw as well, but we have to make do with nonbinary CGI file
uploads for this edition in Chapters 15 and 16, and limited email attachments in Py-
MailCGI. This seems less than ideal nearly two years after 3.0’s release, but such is life
in the dynamic worlds of both software development at large and books that aim to
lead the curve instead of following it.

Using Book Examples

Because this book’s examples form much of its content, I want to say a few words about
them up front.

Where to Look for Examples and Updates

As before, examples, updates, corrections, and supplements for this book will be main-
tained at the author’s website, which lives officially at the following URL:

http://www.rmi.net/~lutz/about-pp4e.html

This page at my book support website will contain links to all supplemental information
related to this version of the book. Because I don’t own that domain name, though, if
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that link ceases to be during this book’s shelf life, try the following alternative site as a
fallback option:

http://learning-python.com/books/about-pp4e.html (alternative location)

If neither of those links work, try a general web search (which, of course, is what most
readers will probably try first anyhow).

Wherever it may live, this website (as well as O’Reilly’s, described in the next section)
is where you can fetch the book examples distribution package—an archive file con-
taining all of the book’s examples, as well as some extras that are mentioned but not
listed in the book itself. To work along without having to type the examples manually,
download the package, unpack it, and consult its README.xt file for usage details.
I’ll describe how example labels and system prompts in this book imply file locations
in the package when we use our first script in the first chapter.

As for the first three editions, I will also be maintaining an informal “blog” on this
website that describes Python changes over time and provides general book-related
notes and updates that you should consider a supplemental appendix to this text.

O’Reilly’s website for this book, described later in this Preface, also has an errata report
system, and you can report issues at either my site or O’Reilly’s. I tend to keep my book
websites more up to date, but it’s not impossible that O’Reilly’s errata page may su-
persede mine for this edition. In any event, you should consider the union of these two
lists to be the official word on book corrections and updates.

Example Portability

The examples in this book were all developed, tested, and run under Windows 7, and
Python 3.1. The book’s major examples were all tested and ran successfully on the
upcoming Python 3.2, too (its alpha 3 release), just before the book went to the printer,
so most or all of this book applies to Python 3.2 as well. In addition, the C code of
Chapter 20 and a handful of parallel programming examples were run under Cygwin
on Windows to emulate a Unix environment.

Although Python and its libraries are generally platform neutral, some of this book’s
code may require minor changes to run on other platforms, such as Mac OS X, Linux,
and other Unix variants. The tkinter GUI examples, as well as some systems program-
ming scripts, may be especially susceptible to platform differences. Some portability
issues are pointed out along the way, but others may not be explicitly noted.

Since T had neither time nor budget to test on and accommodate all possible machines
that readers might use over the lifespan of this book, updates for platform-specific
behaviors will have to fall into the suggested exercises category. If you find a platform
dependency and wish to submit a patch for it, though, please see the updates site listed
earlier; I'll be happy to post any platform patches from readers there.
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Demo Launchers

The book examples package described earlier also includes portable example demo
launcher scripts named PyDemos and PyGadgets, which provide a quick look at some
of this book’s major GUI- and Web-based examples. These scripts and their launchers,
located at the top of the examples tree, can be run to self-configure program and module
search paths, and so can generally be run immediately on compatible platforms, in-
cluding Windows. See the package’s README files as well as the overviews near the
end of Chapters 6 and 10 for more on these scripts.

Code Reuse Policies

We now interrupt this Preface for a word from the legal department. This book is here
to help you get your job done. In general, you may use the code in this book in your
programs and documentation. You do not need to contact us for permission unless
you’re reproducing a significant portion of the code. For example, writing a program
that uses several chunks of code from this book does not require permission. Selling or
distributing a CD-ROM of examples from O’Reilly books does require permission.
Answering a question by citing this book and quoting example code does not require
permission. Incorporating a significant amount of example code from this book into
your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Programming Python, Fourth Edition, by
Mark Lutz (O’Reilly). Copyright 2011 Mark Lutz, 978-0-596-15810-1.”

Contacting O'Reilly

I described my own examples and updates sites in the prior section. In addition to that
advice, you can also address comments and questions about this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States and Canada)

707-827-7000 (international/local)

707-829-0104 (fax)

As mentioned, O’Reilly maintains a web page for this book, which lists errata, exam-
ples, and any additional information. You can access this page at:

http://oreilly.com/catalog/9780596158101
To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

xxxvi | Preface



For more information about books, conferences, software, Resource Centers, and the
O’Reilly Network, see the O’Reilly website at:

http://www.oreilly.com

Conventions Used in This Book

The following font conventions are used in this book:

Italic
Used for file and directory names, to emphasize new terms when first introduced,
and for some comments within code sections

Constant width
Used for code listings and to designate modules, methods, options, classes, func-
tions, statements, programs, objects, and HTML tags

Constant width bold
Used in code sections to show user input

Constant width italic
Used to mark replaceables

This icon designates a note related to the nearby text.

This icon designates a warning related to the nearby text.

g
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So, What's Python?

As discussed, this book won’t devote much space to Python fundamentals, and we’ll
defer an abstract discussion of Python roles until the Conclusion, after you’ve had a
chance to see it in action firsthand. If you are looking for a concise definition of this
book’s topic, though, try this:

Python is a general-purpose, open source computer programming language. It is opti-
mized for software quality, developer productivity, program portability, and compo-
nent integration. Python is used by at least hundreds of thousands of developers around
the world in areas such as Internet scripting, systems programming, user interfaces,
product customization, numeric programming, and more. It is generally considered to
be among the top four or five most widely-used programming languages in the world
today.

As a popular language focused on shrinking development time, Python is deployed in
a wide variety of products and roles. Counted among its current user base are Google,
YouTube, Industrial Light & Magic, ESRI, the BitTorrent file sharing system, NASA’s
Jet Propulsion Lab, the game Eve Online, and the National Weather Service. Python’s
application domains range from system administration, website development, cell
phone scripting, and education to hardware testing, investment analysis, computer
games, and spacecraft control.

Among other things, Python sports a remarkably simple, readable, and maintainable
syntax; integration with external components coded in other languages; a multi-
paradigm design, with OOP, functional, and modular structures; and a vast collection
of precoded interfaces and utilities. Its tool set makes it a flexible and agile language,
ideal for both quick tactical tasks as well as longer-range strategic application devel-
opment efforts. Although it is a general-purpose language, Python is often called a
scripting language because it makes it easy to utilize and direct other software
components.

Perhaps Python’s best asset, though, is simply that it makes software development more
rapid and enjoyable. There is a class of people for whom programming is an end in
itself. They enjoy the challenge. They write software for the pure pleasure of doing so
and often view commercial or career reward as secondary consequence. This is the class
that largely invented the Internet, open source, and Python. This is also the class that
has historically been a primary audience for this book. As they’ve often relayed, with
a tool like Python, programming can be just plain fun.

To truly understand how, read on; though something of a side effect, much of this book
serves as a demonstration of Python’s ideals in action in real-world code. As we’ll see,
especially when combined with toolkits for GUIs, websites, systems programming, and
so on, Python serves as enabling technology.
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PART |

The Beginning

This part of the book gets things started by taking us on a quick tour that reviews Python
fundamental prerequisites and introduces some of the most common ways it is applied.

Chapter 1

This chapter kicks things off by using a simple example—recording information
about people—to briefly introduce some of the major Python application domains
we’ll be studying in this book. We’ll migrate the same example through multiple
steps. Along the way, we’ll meet databases, GUIs, websites, and more. This is
something of a demo chapter, designed to pique your interest. We won’t learn the
full story here, but we’ll have a chance to see Python in action before digging into
the details. This chapter also serves as a review of some core language ideas you
should be familiar with before starting this book, such as data representation and
object-oriented programming (OOP).

The point of this part of the book is not to give you an in-depth look at Python, but
just to let you sample its application and to provide you with a quick look at some of
Python’s broader goals and purposes.






CHAPTER 1
A Sneak Preview

“Programming Python: The Short Story”

If you are like most people, when you pick up a book as large as this one, you’d like to
know a little about what you’re going to be learning before you roll up your sleeves.
That’s what this chapter is for—it provides a demonstration of some of the kinds of
things you can do with Python, before getting into the details. You won’t learn the full
story here, and if you’re looking for complete explanations of the tools and techniques
applied in this chapter, you’ll have to read on to later parts of the book. The point here
is just to whet your appetite, review a few Python basics, and preview some of the topics
to come.

To do this, I'll pick a fairly simple application task—constructing a database of
records—and migrate it through multiple steps: interactive coding, command-line
tools, console interfaces, GUIs, and simple web-based interfaces. Along the way, we’ll
also peek at concepts such as data representation, object persistence, and object-
oriented programming (OOP); explore some alternatives that we’ll revisit later in the
book; and review some core Python ideas that you should be aware of before reading
this book. Ultimately, we’ll wind up with a database of Python class instances, which
can be browsed and changed from a variety of interfaces.

I'll cover additional topics in this book, of course, but the techniques you will see here
are representative of some of the domains we’ll explore later. And again, if you don’t
completely understand the programs in this chapter, don’t worry because you
shouldn’t—not yet anyway. This is just a Python demo. We'll fill in the rest of the
details soon enough. For now, let’s start off with a bit of fun.




Readers of the Fourth Edition of Learning Python might recognize some
aspects of the running example used in this chapter—the characters here
| are similar in spirit to those in the OOP tutorial chapter in that book,
and the later class-based examples here are essentially a variation on a
theme. Despite some redundancy, I'm revisiting the example here for
three reasons: it serves its purpose as a review of language fundamentals;
some readers of this book haven’t read Learning Python; and the exam-
ple receives expanded treatment here, with the addition of GUland Web
interfaces. That is, this chapter picks up where Learning Python left off,
pushing this core language example into the realm of realistic applica-
tions—which, in a nutshell, reflects the purpose of this book.

The Task

Imagine, if you will, that you need to keep track of information about people for some
reason. Maybe you want to store an address book on your computer, or perhaps you
need to keep track of employees in a small business. For whatever reason, you want to
write a program that keeps track of details about these people. In other words, you
want to keep records in a database—to permanently store lists of people’s attributes
on your computer.

Naturally, there are off-the-shelf programs for managing databases like these. By writ-
ing a program for this task yourself, however, you’ll have complete control over its
operation. You can add code for special cases and behaviors that precoded software
may not have anticipated. You won’t have to install and learn to use yet another data-
base product. And you won’t be at the mercy of a software vendor to fix bugs or add
new features. You decide to write a Python program to manage your people.

Step 1: Representing Records

If we’re going to store records in a database, the first step is probably deciding what
those records will look like. There are a variety of ways to represent information about
people in the Python language. Built-in object types such as lists and dictionaries are
often sufficient, especially if we don’t initially care about processing the data we store.

Using Lists
Lists, for example, can collect attributes about people in a positionally ordered way.
Start up your Python interactive interpreter and type the following two statements:

>>> bob
>>> sue

['Bob Smith', 42, 30000, 'software']
["Sue Jones', 45, 40000, 'hardware']
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We’ve just made two records, albeit simple ones, to represent two people, Bob and Sue
(my apologies if you really are Bob or Sue, generically or otherwise”). Each record is a
list of four properties: name, age, pay, and job fields. To access these fields, we simply
index by position; the result is in parentheses here because it is a tuple of two results:

>>> bob[0], sue[2] # fetch name, pay
('Bob Smith', 40000)

Processing records is easy with this representation; we just use list operations. For
example, we can extract a last name by splitting the name field on blanks and grabbing
the last part, and we can give someone a raise by changing their list in-place:

>>> bob[0].split()[-1] # what's bob's last name?
'Smith’

>>> sue[2] *= 1.25 # give sue a 25% raise
>>> sue

['Sue Jones', 45, 50000.0, 'hardware']

The last-name expression here proceeds from left to right: we fetch Bob’s name, split
it into a list of substrings around spaces, and index his last name (run it one step at a
time to see how).

Start-up pointers

Since this is the first code in this book, here are some quick pragmatic pointers for
reference:

* This code may be typed in the IDLE GUI; after typing python at a shell prompt (or
the full directory path to it if it’s not on your system path); and so on.

* The >>> characters are Python’s prompt (not code you type yourself).

* The informational lines that Python prints when this prompt starts up are usually
omitted in this book to save space.

* I'm running all of this book’s code under Python 3.1; results in any 3.X release
should be similar (barring unforeseeable Python changes, of course).

* Apart from some system and C integration code, most of this book’s examples are
run under Windows 7, though thanks to Python portability, it generally doesn’t
matter unless stated otherwise.

If you’ve never run Python code this way before, see an introductory resource such as
O’Reilly’s Learning Python for help with getting started. I'll also have a few words to
say about running code saved in script files later in this chapter.

* No, I'm serious. In the Python classes I teach, I had for many years regularly used the name “Bob Smith,”
age 40.5, and jobs “developer” and “manager” as a supposedly fictitious database record—until a class in
Chicago, where I met a student named Bob Smith, who was 40.5 and was a developer and manager. The
world is stranger than it seems.
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A database list
Of course, what we’ve really coded so far is just two variables, not a database; to collect
Bob and Sue into a unit, we might simply stuff them into another list:

>>> people = [bob, sue] # reference in list of lists
>>> for person in people:
print(person)

['Bob Smith', 42, 30000, 'software']
['Sue Jones', 45, 50000.0, 'hardware']

Now the people list represents our database. We can fetch specific records by their
relative positions and process them one at a time, in loops:

>>> people[1][0]

'Sue Jones'

>>> for person in people:

print(person[0].split()[-1]) # print last names
person[2] *= 1.20 # give each a 20% raise
Smith
Jones
>>> for person in people: print(person[2]) # check new pay
36000.0
60000.0

Now that we have a list, we can also collect values from records using some of Python’s
more powerful iteration tools, such as list comprehensions, maps, and generator
expressions:

>>> pays = [person[2] for person in people]  # collect all pay

>>> pays

[36000.0, 60000.0]

>>> pays = map((lambda x: x[2]), people) # ditto (map is a generator in 3.X)
>>> list(pays)
[36000.0, 60000.0]

>>> sum(person[2] for person in people) # generator expression, sum built-in
96000.0

To add a record to the database, the usual list operations, such as append and extend,
will suffice:

>>> people.append(['Tom', 50, 0, None])

>>> len(people)

3
>>> people[-1][0]
'Tom'

Lists work for our people database, and they might be sufficient for some programs,
but they suffer from a few major flaws. For one thing, Bob and Sue, at this point, are
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just fleeting objects in memory that will disappear once we exit Python. For another,
every time we want to extract a last name or give a raise, we’ll have to repeat the kinds
of code we just typed; that could become a problem if we ever change the way those
operations work—we may have to update many places in our code. We’ll address these
issues in a few moments.

Field labels

Perhaps more fundamentally, accessing fields by position in a list requires us to mem-
orize what each position means: if you see a bit of code indexing a record on magic
position 2, how can you tell it is extracting a pay? In terms of understanding the code,
it might be better to associate a field name with a field value.

We might try to associate names with relative positions by using the Python range built-
in function, which generates successive integers when used in iteration contexts (such
as the sequence assignment used initially here):

>>> NAME, AGE, PAY = range(3) #0, 1, and 2

>>> bob = ['Bob Smith', 42, 10000]

>>> bob[NAME]

'Bob Smith’

>>> PAY, bob[PAY]

(2, 10000)

This addresses readability: the three uppercase variables essentially become field
names. This makes our code dependent on the field position assignments, though—
we have to remember to update the range assignments whenever we change record
structure. Because they are not directly associated, the names and records may become
out of sync over time and require a maintenance step.

Moreover, because the field names are independent variables, there is no direct map-
ping from a record list back to its field’s names. A raw record list, for instance, provides
no way to label its values with field names in a formatted display. In the preceding
record, without additional code, there is no path from value 42 to label AGE:
bob.index(42) gives 1, the value of AGE, but not the name AGE itself.

We might also try this by using lists of tuples, where the tuples record both a field name
and a value; better yet, a list of lists would allow for updates (tuples are immutable).
Here’s what that idea translates to, with slightly simpler records:

>>> bob = [['name', 'Bob Smith'], ['age', 42], ['pay', 10000]]

>>> sue = [['name', 'Sue Jones'], ['age', 45], ['pay', 20000]]
>>> people = [bob, sue]

This really doesn’t fix the problem, though, because we still have to index by position
in order to fetch fields:

>>> for person in people:
print(person[0][1], person[2][1]) # name, pay
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Bob Smith 10000
Sue Jones 20000

>>> [person[0][1] for person in people] # collect names
['Bob Smith', 'Sue Jones']

>>> for person in people:
print(person[0][1].split()[-1]) # get last names
person[2][1] *= 1.10 # give a 10% raise

Smith
Jones
>>> for person in people: print(person[2])

['pay', 11000.0]
['pay', 22000.0]

All we’ve really done here is add an extra level of positional indexing. To do better, we
might inspect field names in loops to find the one we want (the loop uses tuple assign-
ment here to unpack the name/value pairs):

>>> for person in people:

for (name, value) in person:
if name == 'name': print(value) # find a specific field

Bob Smith
Sue Jones

Better yet, we can code a fetcher function to do the job for us:

>>> def field(record, label):
for (fname, fvalue) in record:
if fname == label: # find any field by name
return fvalue

>>> field(bob, 'name')
'Bob Smith'

>>> field(sue, 'pay')
22000.0

>>> for rec in people:
print(field(rec, 'age')) # print all ages

42
45

If we proceed down this path, we’ll eventually wind up with a set of record interface
functions that generically map field names to field data. If you’ve done any Python
coding in the past, though, you probably already know that there is an easier way to
code this sort of association, and you can probably guess where we’re headed in the
next section.

8 | Chapter1: ASneak Preview



Using Dictionaries

The list-based record representations in the prior section work, though not without
some cost in terms of performance required to search for field names (assuming you
need to care about milliseconds and such). But if you already know some Python, you
also know that there are more efficient and convenient ways to associate property
names and values. The built-in dictionary object is a natural:

>>> bob = {'name': 'Bob Smith', 'age': 42, 'pay': 30000, 'job': 'dev'}

>>> sue = {"name': 'Sue Jones', 'age': 45, 'pay': 40000, 'job': 'hdw'}
Now, Bob and Sue are objects that map field names to values automatically, and they
make our code more understandable and meaningful. We don’t have to remember what
anumeric offset means, and we let Python search for the value associated with a field’s
name with its efficient dictionary indexing:

>>> bob[ 'name'], sue['pay'] # not bob[0], sue[2]
('Bob Smith', 40000)

>>> bob[ 'name"].split()[-1]
'Smith'

>>> sue['pay'] *= 1.10

>>> sue[ 'pay']

44000.0
Because fields are accessed mnemonically now, they are more meaningful to those who
read your code (including you).

Other ways to make dictionaries

Dictionaries turn out to be so useful in Python programming that there are even more
convenient ways to code them than the traditional literal syntax shown earlier—e.g.,
with keyword arguments and the type constructor, as long as the keys are all strings:

>>> bob = dict(name='Bob Smith', age=42, pay=30000, job='dev')
>>> sue = dict(name='Sue Jones', age=45, pay=40000, job='hdw')
>>> bob

{"'pay': 30000, 'job': 'dev', 'age': 42, 'name': 'Bob Smith'}
>>> sue

{"'pay': 40000, 'job': 'hdw', 'age': 45, 'name': 'Sue Jones'}

by filling out a dictionary one field at a time (recall that dictionary keys are pseudo-
randomly ordered):

>>> sue = {}

>>> sue['name'] = 'Sue Jones'
>>> sue['age'] = 45

>>> sue['pay'] = 40000

>>> sue['job'] = "hdw'

>>> sue
{'job": 'hdw', 'pay': 40000, 'age': 45, 'name': 'Sue Jones'}
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and by zipping together name/value lists:
>>> names = ['name', 'age', 'pay', 'job']
>>> values = ['Sue Jones', 45, 40000, 'hdw']
>>> list(zip(names, values))
[("name", 'Sue Jones'), ('age', 45), ('pay', 40000), ('job', "hdw')]
>>> sue = dict(zip(names, values))
>>> sue
{"job": 'hdw', 'pay': 40000, 'age': 45, 'name': 'Sue Jones'}
We can even make dictionaries from a sequence of key values and an optional starting
value for all the keys (handy to initialize an empty dictionary):
>>> fields
>>> record

>>> record
{"job': '2", 'pay': '?', 'age': '?', 'name': '?'}

(‘name’, ‘age', 'job', 'pay’)
dict.fromkeys(fields, '?")

Lists of dictionaries

Regardless of how we code them, we still need to collect our dictionary-based records
into a database; a list does the trick again, as long as we don’t require access by key at
the top level:

>>> bob

{"pay': 30000, 'job': 'dev', 'age': 42, 'name': 'Bob Smith'}

>>> sue

{"job": 'hdw', 'pay': 40000, 'age': 45, 'name': 'Sue Jones'}

>>> people = [bob, sue] # reference in a list
>>> for person in people:
print(person[ ‘name'], person['pay'], sep=', ') # all name, pay

Bob Smith, 30000
Sue Jones, 40000

>>> for person in people:
if person['name'] == 'Sue Jones': # fetch sue's pay
print(person[ 'pay'])

40000

[teration tools work just as well here, but we use keys rather than obscure positions (in
database terms, the list comprehension and map in the following code project the da-
tabase on the “name” field column):

>>> names = [person['name'] for person in people] # collect names

>>> names
['Bob Smith', 'Sue Jones']

>>> list(map((lambda x: x['name']), people)) # ditto, generate
['Bob Smith', 'Sue Jones']

>>> sum(person['pay'] for person in people) # sum all pay
70000
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Interestingly, tools such as list comprehensions and on-demand generator expressions
can even approach the utility of SQL queries here, albeit operating on in-memory
objects:

>>> [rec['name'] for rec in people if rec['age'] >= 45] # SQL-ish query
['Sue Jones']

>>> [(rec['age'] ** 2 if rec['age'] >= 45 else rec['age']) for rec in people]
[42, 2025]

>>> G = (rec['name'] for rec in people if rec['age'] >= 45)
>>> next(G)
'Sue Jones'

>>> G = ((rec['age'] ** 2 if rec['age'] >= 45 else rec['age']) for rec in people)
>>> G.__next__()
42

And because dictionaries are normal Python objects, these records can also be accessed
and updated with normal Python syntax:
>>> for person in people:

print(person[ 'name'].split()[-1]) # last name
person['pay'] *= 1.10 # a 10% raise

Smith
Jones

>>> for person in people: print(person['pay'])

33000.0
44000.0

Nested structures

Incidentally, we could avoid the last-name extraction code in the prior examples by
further structuring our records. Because all of Python’s compound datatypes can be
nested inside each other and as deeply as we like, we can build up fairly complex in-
formation structures easily—simply type the object’s syntax, and Python does all the
work of building the components, linking memory structures, and later reclaiming their
space. This is one of the great advantages of a scripting language such as Python.

The following, for instance, represents a more structured record by nesting a dictionary,
list, and tuple inside another dictionary:
>>> bob2 = {'name': {'first': 'Bob', 'last': 'Smith'},
'age': 42,
'job': ['software', 'writing'],
'pay': (40000, 50000)}
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Because this record contains nested structures, we simply index twice to go two levels
deep:

>>> bob2[ 'name'] # bob's full name
{'last': 'Smith', 'first': 'Bob'}

>>> bob2[ 'name']['last'] # bob's last name
'Smith’

>>> bob2[ 'pay'][1] # bob's upper pay
50000

The name field is another dictionary here, so instead of splitting up a string, we simply
index to fetch the last name. Moreover, people can have many jobs, as well as minimum
and maximum pay limits. In fact, Python becomes a sort of query language in such
cases—we can fetch or change nested data with the usual object operations:

>>> for job in bob2['job']: print(job) # all of bob's jobs
software
writing

>> bob2['job"][-1] # bob's last job

'writing'

>>> bob2['job'].append('janitor") # bob gets a new job

>>> bob2

{'job': ['software', 'writing', 'janitor'], 'pay': (40000, 50000), 'age
{'last': 'Smith', 'first': 'Bob'}}

"1 42, 'name':

It’s OK to grow the nested list with append, because it is really an independent object.
Such nesting can come in handy for more sophisticated applications; to keep ours sim-
ple, we’ll stick to the original flat record structure.

Dictionaries of dictionaries

One last twist on our people database: we can get a little more mileage out of diction-
aries here by using one to represent the database itself. That is, we can use a dictionary
of dictionaries—the outer dictionary is the database, and the nested dictionaries are
the records within it. Rather than a simple list of records, a dictionary-based database
allows us to store and retrieve records by symbolic key:

>>> bob = dict(name="Bob Smith', age=42, pay=30000, job='dev')

>>> sue = dict(name='Sue Jones', age=45, pay=40000, job='hdw')

>>> bob

{'pay': 30000, 'job': 'dev', 'age': 42, 'name': 'Bob Smith'}

>>> db = {}

>>> db['bob'] = bob # reference in a dict of dicts
>>> db['sue'] = sue

>>>

>>> db[ 'bob"' ][ 'name"] # fetch bob's name

'Bob Smith'

>>> db['sue']['pa
>>> db['sue']['pa
50000

= 50000 # change sue's pay

y']
y'] # fetch sue's pay
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Notice how this structure allows us to access a record directly instead of searching for
it in a loop—we get to Bob’s name immediately by indexing on key bob. This really is
a dictionary of dictionaries, though you won’t see all the gory details unless you display
the database all at once (the Python pprint pretty-printer module can help with legi-
bility here):

>>> db

{"bob": {'pay': 30000, 'job': 'dev', 'age': 42, 'name': 'Bob Smith'}, 'sue':

{"pay': 50000, 'job': "hdw', 'age': 45, 'name': 'Sue Jones'}}

>>> import pprint

>>> pprint.pprint(db)

{'bob"': {'age': 42, 'job': 'dev', 'name': 'Bob Smith', 'pay': 30000},

"sue': {'age': 45, 'job': 'hdw', 'name': 'Sue Jones', 'pay': 50000}}

If we still need to step through the database one record at a time, we can now rely on
dictionary iterators. In recent Python releases, a dictionary iterator produces one key
in a for loop each time through (for compatibility with earlier releases, we can also call
the db.keys method explicitly in the for loop rather than saying just db, but since
Python 3’s keys result is a generator, the effect is roughly the same):

>>> for key in db:
print(key, '=>"', db[key]['name'])

bob => Bob Smith
sue => Sue Jones

>>> for key in db:
print(key, '=>', db[key]['pay'])

bob => 30000
sue => 50000

To visit all records, either index by key as you go:

>>> for key in db:
print(db[key][ 'name'].split()[-1])
db[key]['pay'] *= 1.10

Smith
Jones

or step through the dictionary’s values to access records directly:

>>> for record in db.values(): print(record['pay'])

33000.0
55000.0

>>> x = [db[key][ 'name’] for key in db]
>>> X
['Bob Smith', 'Sue Jones']

>>> x = [rec['name'] for rec in db.values()]
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>>> X
['Bob Smith', 'Sue Jones']

And to add a new record, simply assign it to a new key; this is just a dictionary, after all:

>>> db["tom'] = dict(name='Tom"', age=50, job=None, pay=0)
>>>

>>> db[ "tom']

{"pay': 0, 'job': None, 'age': 50, 'name': 'Tom'}

>>> db[ "tom' ][ 'name']

'Tom'

>>> list(db.keys())

['bob', 'sue', 'tom']

>>> len(db)

>>> [rec['age'] for rec in db.values()]

[42, 45, 50]

>>> [rec['name'] for rec in db.values() if rec['age'] >= 45] # SQL-ish query
['Sue Jones', 'Tom']

Although our database is still a transient object in memory, it turns out that this
dictionary-of-dictionaries format corresponds exactly to a system that saves objects
permanently—the shelve (yes, this should probably be shelf, grammatically speaking,
but the Python module name and term is shelve). To learn how, let’s move on to the
next section.

Step 2: Storing Records Persistently

So far, we’ve settled on a dictionary-based representation for our database of records,
and we’ve reviewed some Python data structure concepts along the way. As mentioned,
though, the objects we’ve seen so far are temporary—they live in memory and they go
away as soon as we exit Python or the Python program that created them. To make our
people persistent, they need to be stored in a file of some sort.

Using Formatted Files

One way to keep our data around between program runs is to write all the data out to
a simple text file, in a formatted way. Provided the saving and loading tools agree on
the format selected, we’re free to use any custom scheme we like.

Test data script

So that we don’t have to keep working interactively, let’s first write a script that initi-
alizes the data we are going to store (if you’ve done any Python work in the past, you
know that the interactive prompt tends to become tedious once you leave the realm of
simple one-liners). Example 1-1 creates the sort of records and database dictionary
we’ve been working with so far, but because it is a module, we can import it repeatedly
without having to retype the code each time. In a sense, this module is a database itself,
but its program code format doesn’t support automatic or end-user updates as is.
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Example 1-1. PP4E\Preview\initdata.py

# initialize data to be stored in files, pickles, shelves

# records

bob = {'name': 'Bob Smith', 'age': 42, 'pay': 30000, 'job': 'dev'}
sue = {'name': 'Sue Jones', 'age': 45, 'pay': 40000, 'job': 'hdw'}
tom = {"name': 'Tom', 'age': 50, 'pay': 0, 'job': None}

# database

db = {}

db['bob'] = bob

db['sue'] = sue

db['tom'] = tom

if name_ =="' main_':

for key in db:

print(key, '=>\n ', db[key])

# when run as a script

As usual, the _name__ test at the bottom of Example 1-1 is true only when this file is
run, not when it is imported. When run as a top-level script (e.g., from a command
line, via an icon click, or within the IDLE GUI), the file’s self-test code under this test
dumps the database’s contents to the standard output stream (remember, that’s what
print function-call statements do by default).

Here is the script in action being run from a system command line on Windows. Type
the following command in a Command Prompt window after a cd to the directory where
the file is stored, and use a similar console window on other types of computers:

...\PP4E\Preview> python initdata.py

bob =>

{"job': 'dev', 'pay': 30000, 'age': 42, 'name': 'Bob Smith'}
sue =>

{"job"': 'hdw', 'pay': 40000, 'age': 45, 'name': 'Sue Jones'}
tom =>

{"job"': None, 'pay': 0, 'age': 50, 'name': 'Tom'}

File name conventions

Since this is our first source file (a.k.a. “script”), here are three usage notes for this
book’s examples:

* The text ...\PP4E\Preview> in the first line of the preceding example listing stands
for your operating system’s prompt, which can vary per platform; you type just the
text that follows this prompt (python initdata.py).

* Like all examples in this book, the system prompt also gives the directory in the
downloadable book examples package where this command should be run. When
running this script using a command-line in a system shell, make sure the shell’s
current working directory is PP4E\Preview. This can matter for examples that use
files in the working directory.
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* Similarly, the label that precedes every example file’s code listing tells you where
the source file resides in the examples package. Per the Example 1-1 listing label
shown earlier, this script’s full filename is PP4E\Preview\initdata.py in the
examples tree.

We'll use these conventions throughout the book; see the Preface for more on getting
the examples if you wish to work along. I occasionally give more of the directory path
in system prompts when it’s useful to provide the extra execution context, especially
in the system part of the book (e.g., a “C:\” prefix from Windows or more directory
names).

Script start-up pointers

I gave pointers for using the interactive prompt earlier. Now that we’ve started running
script files, here are also a few quick startup pointers for using Python scripts in general:

* On some platforms, you may need to type the full directory path to the Python
program on your machine; if Python isn’t on your system path setting on Windows,
for example, replace python in the command with C:\Python31\python (this as-
sumes you’re using Python 3.1).

* On most Windows systems you also don’t need to type python on the command
line at all; just type the file’s name to run it, since Python is registered to open “.py”
script files.

* You can also run this file inside Python’s standard IDLE GUI (open the file and
use the Run menu in the text edit window), and in similar ways from any of the
available third-party Python IDEs (e.g., Komodo, Eclipse, NetBeans, and the Wing
IDE).

* If you click the program’s file icon to launch it on Windows, be sure to add an
input() call to the bottom of the script to keep the output window up. On other
systems, icon clicks may require a #! line at the top and executable permission via
a chmod command.

I'll assume here that you’re able to run Python code one way or another. Again, if you’re
stuck, see other books such as Learning Python for the full story on launching Python
programs.

Data format script

Now, all we have to do is store all of this in-memory data in a file. There are a variety
of ways to accomplish this; one of the most basic is to write one piece of data at a time,
with separators between each that we can use when reloading to break the data apart.
Example 1-2 shows one way to code this idea.
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Example 1-2. PP4E\Preview\make_db_file.py

nnn

Save in-memory database object to a file with custom formatting;
assume 'endrec.', 'enddb.', and '=>' are not used in the data;
assume db is dict of dict; warning: eval can be dangerous - it
runs strings as code; could also eval() record dict all at once;
could also dbfile.write(key + '\n') vs print(key, file=dbfile);

non

dbfilename = 'people-file'
ENDDB = 'enddb.'

ENDREC = 'endrec.'

RECSEP = '=>'

def storeDbase(db, dbfilename=dbfilename):
"formatted dump of database to flat file"
dbfile = open(dbfilename, 'w')
for key in db:
print(key, file=dbfile)
for (name, value) in db[key].items():
print(name + RECSEP + repr(value), file=dbfile)
print(ENDREC, file=dbfile)
print(ENDDB, file=dbfile)
dbfile.close()

def loadDbase(dbfilename=dbfilename):
"parse data to reconstruct database"
dbfile = open(dbfilename)
import sys
sys.stdin = dbfile
db = {}
key = input()
while key != ENDDB:
rec = {}
field = input()
while field != ENDREC:
name, value = field.split(RECSEP)
rec[name] = eval(value)
field = input()
db[key] = rec
key = input()
return db
if _name__ == '_main_':
from initdata import db
storeDbase(db)

This is a somewhat complex program, partly because it has both saving and loading
logic and partly because it does its job the hard way; as we’ll see in a moment, there
are better ways to get objects into files than by manually formatting and parsing them.
For simple tasks, though, this does work; running Example 1-2 as a script writes the
database out to a flat file. It has no printed output, but we can inspect the database file
interactively after this scriptis run, either within IDLE or from a console window where
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you’re running these examples (as is, the database file shows up in the current working
directory):

...\PP4E\Preview> python make_db_file.py

...\PP4E\Preview> python

>>> for line in open('people-file'):
print(line, end="")

bob

job=>"dev'

pay=>30000

age=>42

name=>'Bob Smith'

endrec.

sue

job=>"hdw'

pay=>40000

age=>45

name=>'Sue Jones

endrec.

tom

job=>None

pay=>0

age=>50

name=>"Tom'

endrec.

enddb.

This file is simply our database’s content with added formatting. Its data originates
from the test data initialization module we wrote in Example 1-1 because that is the
module from which Example 1-2’s self-test code imports its data. In practice, Exam-
ple 1-2 itself could be imported and used to store a variety of databases and files.

Notice how data to be written is formatted with the as-code repr call and is re-created
with the eval call, which treats strings as Python code. That allows us to store and re-
create things like the None object, but it is potentially unsafe; you shouldn’t use eval if
you can’t be sure that the database won’t contain malicious code. For our purposes,
however, there’s probably no cause for alarm.

Utility scripts

To test further, Example 1-3 reloads the database from a file each time it is run.

Example 1-3. PP4E\Preview\dump_db_file.py

from make db file import loadDbase
db = loadDbase()
for key in db:

print(key, '=>\n ', db[key])
print(db[ 'sue']['name'])

And Example 1-4 makes changes by loading, updating, and storing again.
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Example 1-4. PP4E\Preview\update_db_file.py

from make_db_file import loadDbase, storeDbase
db = loadDbase()

db['sue']['pay'] *= 1.10

db["tom']['name'] = 'Tom Tom'

storeDbase(db)

Here are the dump script and the update script in action at a system command line;
both Sue’s pay and Tom’s name change between script runs. The main point to notice
is that the data stays around after each script exits—our objects have become persistent
simply because they are mapped to and from text files:
...\PP4E\Preview> python dump_db_file.py
bob =>
{"pay': 30000, 'job': 'dev', 'age': 42, 'name': 'Bob Smith'}
sue =>
{'pay"': 40000, 'job': 'hdw', 'age': 45, 'name': 'Sue Jones'}
tom =>
{'pay': 0, 'job': None, 'age': 50, 'name': 'Tom'}
Sue Jones

...\PP4E\Preview> python update_db_file.py
...\PP4E\Preview> python dump_db_file.py
bob =>
{'pay': 30000, 'job': 'dev', 'age': 42, 'name': 'Bob Smith'}
sue =>
{'pay': 44000.0, 'job': 'hdw', 'age': 45, 'name': 'Sue Jones'}
tom =>
{'pay': 0, 'job': None, 'age': 50, 'name': 'Tom Tom'}
Sue Jones
As is, we’ll have to write Python code in scripts or at the interactive command line for
each specific database update we need to perform (later in this chapter, we’ll do better
by providing generalized console, GUI, and web-based interfaces instead). Butat a basic
level, our text file is a database of records. As we’ll learn in the next section, though, it
turns out that we’ve just done a lot of pointless work.

Using Pickle Files

The formatted text file scheme of the prior section works, but it has some major limi-
tations. For one thing, it has to read the entire database from the file just to fetch one
record, and it must write the entire database back to the file after each set of updates.
Although storing one record’s text per file would work around this limitation, it would
also complicate the program further.

For another thing, the text file approach assumes that the data separators it writes out
to the file will not appear in the data to be stored: if the characters => happen to appear
in the data, for example, the scheme will fail. We might work around this by generating
XML text to represent records in the text file, using Python’s XML parsing tools, which
we’ll meet later in this text, to reload; XML tags would avoid collisions with actual
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data’s text, but creating and parsing XML would complicate the program substantially
t0o.

Perhaps worst of all, the formatted text file scheme is already complex without being
general: itis tied to the dictionary-of-dictionaries structure, and it can’t handle anything
else without being greatly expanded. It would be nice if a general tool existed that could
translate any sort of Python data to a format that could be saved in a file in a single step.

That is exactly what the Python pickle module is designed to do. The pickle module
translates an in-memory Python object into a serialized byte stream—a string of bytes
that can be written to any file-like object. The pickle module also knows how to re-
construct the original object in memory, given the serialized byte stream: we get back
the exact same object. In a sense, the pickle module replaces proprietary data formats
—its serialized format is general and efficient enough for any program. With pickle,
there is no need to manually translate objects to data when storing them persistently,
and no need to manually parse a complex format to get them back. Pickling is similar
in spirit to XML representations, but it’s both more Python-specific, and much simpler
to code.

The net effect is that pickling allows us to store and fetch native Python objects as they
are and in a single step—we use normal Python syntax to process pickled records.
Despite what it does, the pickle module is remarkably easy to use. Example 1-5 shows
how to store our records in a flat file, using pickle.

Example 1-5. PP4E\Preview\make_db_pickle.py

from initdata import db

import pickle

dbfile = open('people-pickle’, 'wb") # use binary mode files in 3.X
pickle.dump(db, dbfile) # data is bytes, not str
dbfile.close()

When run, this script stores the entire database (the dictionary of dictionaries defined
in Example 1-1) to a flat file named people-pickle in the current working directory. The
pickle module handles the work of converting the object to a string. Example 1-6 shows
how to access the pickled database after it has been created; we simply open the file
and pass its content back to pickle to remake the object from its serialized string.

Example 1-6. PP4E\Preview\dump_db_pickle.py
import pickle
dbfile = open('people-pickle', 'rb") # use binary mode files in 3.X
db = pickle.load(dbfile)
for key in db:
print(key, '=>\n ', db[key])
print(db['sue'][ 'name'])

Here are these two scripts at work, at the system command line again; naturally, they
can also be run in IDLE, and you can open and inspect the pickle file by running the
same sort of code interactively as well:
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...\PP4E\Preview> python make_db_pickle.py
...\PP4E\Preview> python dump_db_pickle.py
bob =>

{'pay': 30000, 'job': 'dev', 'age': 42, 'name': 'Bob Smith'}
sue =>

{"'pay': 40000, 'job': 'hdw', 'age': 45, 'name': 'Sue Jones'}
tom =>

{'pay': 0, 'job': None, 'age': 50, 'name': 'Tom'}
Sue Jones

Updating with a pickle file is similar to a manually formatted file, except that Python
is doing all of the formatting work for us. Example 1-7 shows how.

Example 1-7. PP4E\Preview\update-db-pickle.py
import pickle

dbfile = open('people-pickle', 'rb')

db = pickle.load(dbfile)

dbfile.close()

db['sue']['pay'] *= 1.10
db["tom']['name'] = 'Tom Tom'

dbfile = open('people-pickle', 'wb')
pickle.dump(db, dbfile)
dbfile.close()

Notice how the entire database is written back to the file after the records are changed
in memory, just as for the manually formatted approach; this might become slow for
very large databases, but we’ll ignore this for the moment. Here are our update and
dump scripts in action—as in the prior section, Sue’s pay and Tom’s name change
between scripts because they are written back to a file (this time, a pickle file):
...\PP4E\Preview> python update_db_pickle.py
...\PP4E\Preview> python dump_db_pickle.py
bob =>
{"pay': 30000, 'job': 'dev', 'age': 42, 'name': 'Bob Smith'}
sue =>
{"pay': 44000.0, 'job': 'hdw', 'age': 45, 'name': 'Sue Jones'}
tom =>
{"pay': 0, 'job': None, 'age': 50, 'name': 'Tom Tom'}
Sue Jones
Aswe’lllearn in Chapter 17, the Python pickling system supports nearly arbitrary object
types—Ilists, dictionaries, class instances, nested structures, and more. There, we’ll also
learn about the pickler’s text and binary storage protocols; as of Python 3, all protocols
use bytes objects to represent pickled data, which in turn requires pickle files to be
opened in binary mode for all protocols. As we’ll see later in this chapter, the pickler
and its data format also underlie shelves and ZODB databases, and pickled class in-
stances provide both data and behavior for objects stored.

In fact, pickling is more general than these examples may imply. Because they accept
any object that provides an interface compatible with files, pickling and unpickling may
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be used to transfer native Python objects to a variety of media. Using a network socket,
for instance, allows us to ship pickled Python objects across a network and provides
an alternative to larger protocols such as SOAP and XML-RPC.

Using Per-Record Pickle Files

As mentioned earlier, one potential disadvantage of this section’s examples so far is
that they may become slow for very large databases: because the entire database must
be loaded and rewritten to update a single record, this approach can waste time. We
could improve on this by storing each record in the database in a separate flat file. The
next three examples show one way to do so; Example 1-8 stores each record in its own
flat file, using each record’s original key as its filename with a .pkl appended (it creates
the files bob.pkl, sue.pkl, and tom.pkl in the current working directory).

Example 1-8. PP4E\Preview\make_db_pickle_recs.py

from initdata import bob, sue, tom

import pickle

for (key, record) in [('bob', bob), ('tom', tom), ('sue', sue)]:
recfile = open(key + '.pkl', 'wb")
pickle.dump(record, recfile)
recfile.close()

Next, Example 1-9 dumps the entire database by using the standard library’s glob
module to do filename expansion and thus collect all the files in this directory with
a .pkl extension. To load a single record, we open its file and deserialize with pickle;
we must load only one record file, though, not the entire database, to fetch one record.

Example 1-9. PP4E\Preview\dump_db_pickle_recs.py

import pickle, glob

for filename in glob.glob('*.pkl'): # for 'bob','sue','tom
recfile = open(filename, 'rb')
record = pickle.load(recfile)
print(filename, '=>\n ', record)

suefile = open('sue.pkl', 'rb")
print(pickle.load(suefile)[ 'name']) # fetch sue's name

Finally, Example 1-10 updates the database by fetching a record from its file, changing
it in memory, and then writing it back to its pickle file. This time, we have to fetch and
rewrite only a single record file, not the full database, to update.

Example 1-10. PP4E\Preview\update_db_pickle_recs.py

import pickle

suefile = open('sue.pkl', 'rb")
sue = pickle.load(suefile)
suefile.close()
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sue['pay'] *= 1.10

suefile = open('sue.pkl', 'wb")
pickle.dump(sue, suefile)
suefile.close()

Here are our file-per-record scripts in action; the results are about the same as in the
prior section, but database keys become real filenames now. In a sense, the filesystem
becomes our top-level dictionary—filenames provide direct access to each record.
...\PP4E\Preview> python make_db_pickle_recs.py
...\PP4E\Preview> python dump_db_pickle_recs.py
bob.pkl =>
{"pay': 30000, 'job': 'dev', 'age': 42, 'name': 'Bob Smith'}
sue.pkl =>
{'pay': 40000, 'job': 'hdw', 'age': 45, 'name': 'Sue Jones'}
tom.pkl =>
{'pay': 0, 'job': None, 'age': 50, 'name': 'Tom'}
Sue Jones

...\PP4E\Preview> python update_db_pickle_recs.py
...\PP4E\Preview> python dump_db_pickle_recs.py
bob.pkl =>

{'pay': 30000, 'job': 'dev', 'age': 42, 'name': 'Bob Smith'}
sue.pkl =>

{'pay': 44000.0, 'job': 'hdw', 'age': 45, 'name': 'Sue Jones'}
tom.pkl =>

{'pay': 0, 'job': None, 'age': 50, 'name': 'Tom'}
Sue Jones

Using Shelves

Pickling objects to files, as shown in the preceding section, is an optimal scheme in
many applications. In fact, some applications use pickling of Python objects across
network sockets as a simpler alternative to network protocols such as the SOAP and
XML-RPC web services architectures (also supported by Python, but much heavier than
pickle).

Moreover, assuming your filesystem can handle as many files as you’ll need, pickling
one record per file also obviates the need to load and store the entire database for each
update. If we really want keyed access to records, though, the Python standard library
offers an even higher-level tool: shelves.

Shelves automatically pickle objects to and from a keyed-access filesystem. They behave
much like dictionaries that must be opened, and they persist after each program exits.
Because they give us key-based access to stored records, there is no need to manually
manage one flat file per record—the shelve system automatically splits up stored re-
cords and fetches and updates only those records that are accessed and changed. In
this way, shelves provide utility similar to per-record pickle files, but they are usually
easier to code.
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The shelve interface is just as simple as pickle: it is identical to dictionaries, with extra
open and close calls. In fact, to your code, a shelve really does appear to be a persistent
dictionary of persistent objects; Python does all the work of mapping its content to and
from a file. For instance, Example 1-11 shows how to store our in-memory dictionary
objects in a shelve for permanent keeping.

Example 1-11. PP4E\Preview\make_db_shelve.py

from initdata import bob, sue
import shelve

db = shelve.open('people-shelve')
db['bob"] = bob

db['sue'] = sue

db.close()

This script creates one or more files in the current directory with the name people-
shelve as a prefix (in Python 3.1 on Windows, people-shelve.bak, people-shelve.dat, and
people-shelve.dir). You shouldn’t delete these files (they are your database!), and you
should be sure to use the same base name in other scripts that access the shelve.
Example 1-12, for instance, reopens the shelve and indexes it by key to fetch its stored
records.

Example 1-12. PP4E\Preview\dump_db_shelve.py

import shelve
db = shelve.open('people-shelve")
for key in db:

print(key, '=>\n ', db[key])
print(db['sue' ][ 'name'])
db.close()

We still have a dictionary of dictionaries here, but the top-level dictionary is really a
shelve mapped onto a file. Much happens when you access a shelve’s keys—it uses
pickle internally to serialize and deserialize objects stored, and it interfaces with a
keyed-access filesystem. From your perspective, though, it’s just a persistent dictionary.
Example 1-13 shows how to code shelve updates.

Example 1-13. PP4E\Preview\update_db_shelve.py

from initdata import tom
import shelve
db = shelve.open('people-shelve")

sue = db['sue'] # fetch sue
sue['pay'] *= 1.50

db['sue'] = sue # update sue
db['tom'] = tom # add a new record
db.close()

Notice how this code fetches sue by key, updates in memory, and then reassigns to the
key to update the shelve; this is a requirement of shelves by default, but not always of
more advanced shelve-like systems such as ZODB, covered in Chapter 17. As we’ll see
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later, shelve.open also has a newer writeback keyword argument, which, if passed
True, causes all records loaded from the shelve to be cached in memory, and automat-
ically written back to the shelve when it is closed; this avoids manual write backs on
changes, but can consume memory and make closing slow.

Also note how shelve files are explicitly closed. Although we don’t need to pass mode
flags to shelve.open (by default it creates the shelve if needed, and opens it for reads
and writes otherwise), some underlying keyed-access filesystems may require a close
call in order to flush output buffers after changes.

Finally, here are the shelve-based scripts on the job, creating, changing, and fetching
records. The records are still dictionaries, but the database is now a dictionary-like
shelve which automatically retains its state in a file between program runs:

...\PP4E\Preview> python make_db_shelve.py
...\PP4E\Preview> python dump_db_shelve.py

bob =>

{"pay': 30000, 'job': 'dev', 'age': 42, 'name': 'Bob Smith'}
sue =>

{"pay': 40000, 'job': 'hdw', 'age': 45, 'name': 'Sue Jones'}
Sue Jones

...\PP4E\Preview> python update_db_shelve.py
...\PP4E\Preview> python dump_db_shelve.py
bob =>

{"pay': 30000, 'job': 'dev', 'age': 42, 'name': 'Bob Smith'}
sue =>

{"pay': 60000.0, 'job': 'hdw', 'age': 45, 'name': 'Sue Jones'}
tom =>

{'pay': 0, 'job': None, 'age': 50, 'name': 'Tom'}
Sue Jones

When we ran the update and dump scripts here, we added a new record for key tom
and increased Sue’s pay field by 50 percent. These changes are permanent because the
record dictionaries are mapped to an external file by shelve. (In fact, thisis a particularly

good script for Sue—something she might consider scheduling to run often, using a
cron job on Unix, or a Startup folder or msconfig entry on Windows...)

What's in a Name?

Though it’s a surprisingly well-kept secret, Python gets its name from the 1970s British
TV comedy series Monty Python’s Flying Circus. According to Python folklore, Guido
van Rossum, Python’s creator, was watching reruns of the show at about the same time
he needed a name for a new language he was developing. And as they say in show
business, “the rest is history.”

Because of this heritage, references to the comedy group’s work often show up in ex-
amples and discussion. For instance, the name Brian appears often in scripts; the words
spam, lumberjack, and shrubbery have a special connotation to Python users; and pre-
sentations are sometimes referred to as The Spanish Inquisition. As a rule, if a Python
user starts using phrases that have no relation to reality, they’re probably borrowed
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from the Monty Python series or movies. Some of these phrases might even pop up in
this book. You don’t have to run out and rent The Meaning of Life or The Holy Grail
to do useful work in Python, of course, but it can’t hurt.

While “Python” turned out to be a distinctive name, it has also had some interesting
side effects. For instance, when the Python newsgroup, comp.lang.python, came online
in 1994, its first few weeks of activity were almost entirely taken up by people wanting
to discuss topics from the TV show. More recently, a special Python supplement in the
Linux Journal magazine featured photos of Guido garbed in an obligatory “nice red
uniform.”

Python’s news list still receives an occasional post from fans of the show. For instance,
one early poster innocently offered to swap Monty Python scripts with other fans. Had
he known the nature of the forum, he might have at least mentioned whether they were
portable or not.

Step 3: Stepping Up to 00P

Let’s step back for a moment and consider how far we’ve come. At this point, we’ve
created a database of records: the shelve, as well as per-record pickle file approaches
of the prior section suffice for basic data storage tasks. As s, our records are represented
as simple dictionaries, which provide easier-to-understand access to fields than do lists
(by key, rather than by position). Dictionaries, however, still have some limitations that
may become more critical as our program grows over time.

For one thing, there is no central place for us to collect record processing logic. Ex-
tracting last names and giving raises, for instance, can be accomplished with code like
the following;:

>>> import shelve

>>> db = shelve.open('people-shelve')
>>> bob = db['bob']

>>> bob[ "name’].split()[-1] # get bob's last name
'Smith’

>>> sue = db['sue']

>>> sue['pay'] *= 1.25 # give sue a raise
>>> sue[ 'pay']

75000.0

>>> db['sue'] = sue
>>> db.close()

This works, and it might suffice for some short programs. But if we ever need to change
the way last names and raises are implemented, we might have to update this kind of
code in many places in our program. In fact, even finding all such magical code snippets
could be a challenge; hardcoding or cutting and pasting bits of logic redundantly like
this in more than one place will almost always come back to haunt you eventually.

It would be better to somehow hide—that is, encapsulate—such bits of code. Functions
in a module would allow us to implement such operations in a single place and thus
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avoid code redundancy, but still wouldn’t naturally associate them with the records
themselves. What we’d like is a way to bind processing logic with the data stored in
the database in order to make it easier to understand, debug, and reuse.

Another downside to using dictionaries for records is that they are difficult to expand
over time. For example, suppose that the set of data fields or the procedure for giving
raises is different for different kinds of people (perhaps some people get a bonus each
year and some do not). If we ever need to extend our program, there is no natural way
to customize simple dictionaries. For future growth, we’d also like our software to
support extension and customization in a natural way.

If you’ve already studied Python in any sort of depth, you probably already know that
this is where its OOP support begins to become attractive:

Structure
With OOP, we can naturally associate processing logic with record data—classes
provide both a program unit that combines logic and data in a single package and
a hierarchy that allows code to be easily factored to avoid redundancy.

Encapsulation
With OOP, we can also wrap up details such as name processing and pay increases
behind method functions—i.e., we are free to change method implementations
without breaking their users.

Customization
And with OOP, we have a natural growth path. Classes can be extended and cus-
tomized by coding new subclasses, without changing or breaking already working
code.

That is, under OOP, we program by customizing and reusing, not by rewriting. OOP
is an option in Python and, frankly, is sometimes better suited for strategic than for
tactical tasks. It tends to work best when you have time for upfront planning—some-
thing that might be a luxury if your users have already begun storming the gates.

But especially for larger systems that change over time, its code reuse and structuring
advantages far outweigh its learning curve, and it can substantially cut development
time. Even in our simple case, the customizability and reduced redundancy we gain
from classes can be a decided advantage.

Using Classes

OOP is easy to use in Python, thanks largely to Python’s dynamic typing model. In fact,
it’s so easy that we’ll jump right into an example: Example 1-14 implements our data-
base records as class instances rather than as dictionaries.

Example 1-14. PP4E\Preview\person_start.py

class Person:
def _init_ (self, name, age, pay=0, job=None):
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self.name = name
self.age = age
self.pay = pay
self.job = job
if _name__ == '_main_':

bob = PersonfTBob Smith', 42, 30000, 'software')
sue = Person('Sue Jones', 45, 40000, 'hardware')
print(bob.name, sue.pay)

print(bob.name.split()[-1])
sue.pay *= 1.10
print(sue.pay)

There is not much to this class—just a constructor method that fills out the instance
with data passed in as arguments to the class name. It’s sufficient to represent a database
record, though, and it can already provide tools such as defaults for pay and job fields
that dictionaries cannot. The self-test code at the bottom of this file creates two in-
stances (records) and accesses their attributes (fields); here is this file’s output when
run under IDLE (a system command-line works just as well):

Bob Smith 40000

Smith
44000.0

This isn’t a database yet, but we could stuff these objects into a list or dictionary as
before in order to collect them as a unit:
>>> from person_start import Person

>>> bob = Person('Bob Smith', 42)
>>> sue = Person('Sue Jones', 45, 40000)

>>> people = [bob, sue] # a "database" list
>>> for person in people:
print(person.name, person.pay)

Bob Smith o
Sue Jones 40000

>>> x = [(person.name, person.pay) for person in people]
>»> X
[('Bob Smith', 0), ('Sue Jones', 40000)]

>>> [rec.name for rec in people if rec.age >= 45] # SQL-ish query
['Sue Jones']

>>> [(rec.age ** 2 if rec.age >= 45 else rec.age) for rec in people]
[42, 2025]

Notice that Bob’s pay defaulted to zero this time because we didn’t pass in a value for
that argument (maybe Sue is supporting him now?). We might also implement a class
that represents the database, perhaps as a subclass of the built-in list or dictionary types,
with insert and delete methods that encapsulate the way the database is implemented.
We’ll abandon this path for now, though, because it will be more useful to store these
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records persistently in a shelve, which already encapsulates stores and fetches behind
an interface for us. Before we do, though, let’s add some logic.

Adding Behavior

So far, our class is just data: it replaces dictionary keys with object attributes, but it
doesn’t add much to what we had before. To really leverage the power of classes, we
need to add some behavior. By wrapping up bits of behavior in class method functions,
we can insulate clients from changes. And by packaging methods in classes along with
data, we provide a natural place for readers to look for code. In a sense, classes combine
records and the programs that process those records; methods provide logic that in-
terprets and updates the data (we say they are object-oriented, because they always
process an object’s data).

For instance, Example 1-15 adds the last-name and raise logic as class methods; meth-
ods use the self argument to access or update the instance (record) being processed.

Example 1-15. PP4E\Preview\person.py

class Person:

def _init_ (self, name, age, pay=0, job=None):
self.name = name
self.age = age
self.pay = pay
self.job = job

def lastName(self):
return self.name.split()[-1]

def giveRaise(self, percent):
self.pay *= (1.0 + percent)

if _name__ == "' main__':
bob = Person('Bob Smith', 42, 30000, 'software')
sue = Person('Sue Jones', 45, 40000, 'hardware')
print(bob.name, sue.pay)

print(bob.lastName())
sue.giveRaise(.10)
print(sue.pay)

The output of this script is the same as the last, but the results are being computed by
methods now, not by hardcoded logic that appears redundantly wherever it is required:
Bob Smith 40000

Smith
44000.0

Adding Inheritance

One last enhancement to our records before they become permanent: because they are
implemented as classes now, they naturally support customization through the inher-
itance search mechanism in Python. Example 1-16, for instance, customizes the last
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section’s Person class in order to give a 10 percent bonus by default to managers when-
ever they receive a raise (any relation to practice in the real world is purely coincidental).

Example 1-16. PP4E\Preview\manager.py

from person import Person

class Manager(Person):
def giveRaise(self, percent, bonus=0.1):
self.pay *= (1.0 + percent + bonus)

if __name__ == '_ main__
tom = Manager(name="Tom Doe', age=50, pay=50000)
print(tom.lastName())
tom.giveRaise(.20)
print(tom.pay)

When run, this script’s self-test prints the following:

Doe
65000.0

Here, the Manager class appears in a module of its own, but it could have been added
to the person module instead (Python doesn’t require just one class per file). It inherits
the constructor and last-name methods from its superclass, but it customizes just the
giveRaise method (there are a variety of ways to code this extension, as we’ll see later).
Because this change is being added as a new subclass, the original Person class, and any
objects generated from it, will continue working unchanged. Bob and Sue, for example,
inherit the original raise logic, but Tom gets the custom version because of the class
from which he is created. In OOP, we program by customizing, not by changing.

In fact, code that uses our objects doesn’t need to be at all aware of what the raise
method does—it’s up to the object to do the right thing based on the class from which
itis created. Aslong as the object supports the expected interface (here, a method called
giveRaise), it will be compatible with the calling code, regardless of its specific type,
and even if its method works differently than others.

If you’ve already studied Python, you may know this behavior as polymorphism; it’s a
core property of the language, and it accounts for much of your code’s flexibility. When
the following code calls the giveRaise method, for example, what happens depends on
the obj object being processed; Tom gets a 20 percent raise instead of 10 percent be-
cause of the Manager class’s customization:

>>> from person import Person
>>> from manager import Manager

>>> bob = Person(name='Bob Smith', age=42, pay=10000)
>>> sue = Person(name='Sue Jones', age=45, pay=20000)
>>> tom = Manager(name="'Tom Doe', age=55, pay=30000)
>>> db = [bob, sue, tom]
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>>> for obj in db:
obj.giveRaise(.10) # default or custom

>>> for obj in db:
print(obj.lastName(), '=>', obj.pay)

Smith => 11000.0
Jones => 22000.0
Doe => 36000.0

Refactoring Code

Before we move on, there are a few coding alternatives worth noting here. Most of these
underscore the Python OOP model, and they serve as a quick review.

Augmenting methods

As a first alternative, notice that we have introduced some redundancy in Exam-
ple 1-16: the raise calculation is now repeated in two places (in the two classes). We
could also have implemented the customized Manager class by augmenting the inherited
raise method instead of replacing it completely:

class Manager(Person):

def giveRaise(self, percent, bonus=0.1):
Person.giveRaise(self, percent + bonus)

The trick here is to call back the superclass’s version of the method directly, passing in
the self argument explicitly. We still redefine the method, but we simply run the gen-
eral version after adding 10 percent (by default) to the passed-in percentage. This coding
pattern can help reduce code redundancy (the original raise method’s logic appears in
only one place and so is easier to change) and is especially handy for kicking off su-
perclass constructor methods in practice.

If you’ve already studied Python OOP, you know that this coding scheme works be-
cause we can always call methods through either an instance or the class name. In
general, the following are equivalent, and both forms may be used explicitly:

instance.method(argl, arg2)
class.method(instance, argl, arg2)

In fact, the first form is mapped to the second—when calling through the instance,
Python determines the class by searching the inheritance tree for the method name and
passes in the instance automatically. Either way, within giveRaise, self refers to the
instance that is the subject of the call.

Display format

For more object-oriented fun, we could also add a few operator overloading methods
to our people classes. Forexample,a__str_method, shown here, could return a string
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to give the display format for our objects when they are printed as a whole—much
better than the default display we get for an instance:
class Person:

def _str (self):
return '<%s => %s>' % (self.__class__. name__, self.name)

tom = Manager('Tom Jones', 50)
print(tom) # prints: <Manager => Tom Jones>

Here _class__ gives the lowest class from which self was made, even though
__str__ may be inherited. The net effect is that __str__ allows us to print instances
directly instead of having to print specific attributes. We could extend this _str__ to
loop through the instance’s __dict__ attribute dictionary to display all attributes ge-
nerically; for this preview we’ll leave this as a suggested exercise.

We might even code an __add__ method to make + expressions automatically call the
giveRaise method. Whether we should is another question; the fact that a + expression
gives a person a raise might seem more magical to the next person reading our code
than it should.

Constructor customization

Finally, notice that we didn’t pass the job argument when making a manager in Ex-
ample 1-16; if we had, it would look like this with keyword arguments:

tom = Manager(name="'Tom Doe', age=50, pay=50000, job='manager')

The reason we didn’t include a job in the example is that it’s redundant with the class
of the object: if someone is a manager, their class should imply their job title. Instead
of leaving this field blank, though, it may make more sense to provide an explicit con-
structor for managers, which fills in this field automatically:
class Manager(Person):
def __init_ (self, name, age, pay):
Person. _init_ (self, name, age, pay, 'manager')

Now when a manager is created, its job is filled in automatically. The trick here is to
call to the superclass’s version of the method explicitly, just as we did for the
giveRaise method earlier in this section; the only difference here is the unusual name
for the constructor method.

Alternative classes

We won’t use any of this section’s three extensions in later examples, but to demon-
strate how they work, Example 1-17 collects these ideas in an alternative implementa-
tion of our Person classes.
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Example 1-17. PP4E\Preview\person_alternative.py

nnn

Alternative implementation of person classes, with data, behavior,
and operator overloading (not used for objects stored persistently)

non

class Person:

nun

a general person: data+logic
def _init_ (self, name, age, pay=0, job=None):
self.name = name
self.age = age
self.pay = pay
self.job = job
def lastName(self):
return self.name.split()[-1]
def giveRaise(self, percent):
self.pay *= (1.0 + percent)
def _str (self):
return ('<%s => %s: %s, %s>' %
(self. class_ . name_, self.name, self.job, self.pay))

class Manager(Person):
a person with custom raise
inherits general lastname, str
def _init_ (self, name, age, pay):
Person. init_ (self, name, age, pay, 'manager')
def giveRaise(self, percent, bonus=0.1):
Person.giveRaise(self, percent + bonus)

if _name_ =="' main_ ':

bob = Person('Bob Smith', 44)

sue = Person('Sue Jones', 47, 40000, 'hardware')

tom = Manager(name="Tom Doe', age=50, pay=50000)

print(sue, sue.pay, sue.lastName())

for obj in (bob, sue, tom):
obj.giveRaise(.10) # run this obj's giveRaise
print(obj) # run common _ str  method

Notice the polymorphism in this module’s self-test loop: all three objects share the
constructor, last-name, and printing methods, but the raise method called is dependent
upon the class from which an instance is created. When run, Example 1-17 prints the
following to standard output—the manager’s job is filled in at construction, we get the
new custom display format for our objects, and the new version of the manager’s raise
method works as before:

<Person => Sue Jones: hardware, 40000> 40000 Jones

<Person => Bob Smith: None, 0.0>

<Person => Sue Jones: hardware, 44000.0>
<Manager => Tom Doe: manager, 60000.0>
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Such refactoring (restructuring) of code is common as class hierarchies grow and evolve.
In fact, as is, we still can’t give someone a raise if his pay is zero (Bob is out of luck);
we probably need a way to set pay, too, but we’ll leave such extensions for the next
release. The good news is that Python’s flexibility and readability make refactoring
easy—it’s simple and quick to restructure your code. If you haven’t used the language
yet, you’ll find that Python development is largely an exercise in rapid, incremental,
and interactive programming, which is well suited to the shifting needs of real-world
projects.

Adding Persistence

It’s time for a status update. We now have encapsulated in the form of classes custom-
izable implementations of our records and their processing logic. Making our class-
based records persistent is a minor last step. We could store them in per-record pickle
files again; a shelve-based storage medium will do just as well for our goals and is often
easier to code. Example 1-18 shows how.

Example 1-18. PP4E\Preview\make_db_classes.py

import shelve
from person import Person
from manager import Manager

bob = Person('Bob Smith', 42, 30000, 'software')
sue = Person('Sue Jones', 45, 40000, 'hardware')
tom = Manager('Tom Doe', 50, 50000)

db = shelve.open('class-shelve')
db['bob'] = bob

db['sue'] = sue
db["tom'] = tom
db.close()

This file creates three class instances (two from the original class and one from its
customization) and assigns them to keys in a newly created shelve file to store them
permanently. In other words, it creates a shelve of class instances; to our code, the
database looks just like a dictionary of class instances, but the top-level dictionary is
mapped to a shelve file again. To check our work, Example 1-19 reads the shelve and
prints fields of its records.

Example 1-19. PP4E\Preview\dump_db_classes.py

import shelve
db = shelve.open('class-shelve')
for key in db:
print(key, '=>\n ', db[key].name, db[key].pay)

bob = db['bob']
print(bob.lastName())
print(db['tom'].lastName())
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Note that we don’t need to reimport the Person class here in order to fetch its instances
from the shelve or run their methods. When instances are shelved or pickled, the un-
derlying pickling system records both instance attributes and enough information to
locate their classes automatically when they are later fetched (the class’s module simply
has to be on the module search path when an instance is loaded). This is on purpose;
because the class and its instances in the shelve are stored separately, you can change
the class to modify the way stored instances are interpreted when loaded (more on this
later in the book). Here is the shelve dump script’s output just after creating the shelve
with the maker script:
bob =>
Bob Smith 30000
sue =>
Sue Jones 40000
tom =>
Tom Doe 50000

Smith
Doe

As shown in Example 1-20, database updates are as simple as before (compare this to
Example 1-13), but dictionary keys become attributes of instance objects, and updates
are implemented by class method calls instead of hardcoded logic. Notice how we still
fetch, update, and reassign to keys to update the shelve.

Example 1-20. PP4E\Preview\update_db_classes.py

import shelve
db = shelve.open('class-shelve')

sue = db['sue']
sue.giveRaise(.25)
db['sue'] = sue

tom = db['tom']
tom.giveRaise(.20)
db["tom'] = tom
db.close()

And last but not least, here is the dump script again after running the update script;
Tom and Sue have new pay values, because these objects are now persistent in the
shelve. We could also open and inspect the shelve by typing code at Python’s interactive
command line; despite its longevity, the shelve is just a Python object containing Python
objects.

bob =>

Bob Smith 30000
sue =>

Sue Jones 50000.0
tom =>

Tom Doe 65000.0
Smith
Doe

Step 3: Stepping Upto 00P | 35



Tom and Sue both get a raise this time around, because they are persistent objects in
the shelve database. Although shelves can also store simpler object types such as lists
and dictionaries, class instances allow us to combine both data and behavior for our
stored items. In a sense, instance attributes and class methods take the place of records
and processing programs in more traditional schemes.

Other Database Options

At this point, we have a full-fledged database system: our classes simultaneously im-
plement record data and record processing, and they encapsulate the implementation
of the behavior. And the Python pickle and shelve modules provide simple ways to
store our database persistently between program executions. This is not a relational
database (we store objects, not tables, and queries take the form of Python object pro-
cessing code), but it is sufficient for many kinds of programs.

If we need more functionality, we could migrate this application to even more powerful
tools. For example, should we ever need full-blown SQL query support, there are in-
terfaces that allow Python scripts to communicate with relational databases such as
MySQL, PostgreSQL, and Oracle in portable ways.

ORMs (object relational mappers) such as SQLObject and SqlAlchemy offer another
approach which retains the Python class view, but translates it to and from relational
database tables—in a sense providing the best of both worlds, with Python class syntax
on top, and enterprise-level databases underneath.

Moreover, the open source ZODB system provides a more comprehensive object da-
tabase for Python, with support for features missing in shelves, including concurrent
updates, transaction commits and rollbacks, automatic updates on in-memory com-
ponent changes, and more. We’ll explore these more advanced third-party tools in
Chapter 17. For now, let’s move on to putting a good face on our system.

“Buses Considered Harmful”

Over the years, Python has been remarkably well supported by the volunteer efforts of
both countless individuals and formal organizations. Today, the nonprofit Python
Software Foundation (PSF) oversees Python conferences and other noncommercial ac-
tivities. The PSF was preceded by the PSA, a group that was originally formed in re-
sponse to an early thread on the Python newsgroup that posed the semiserious question:
“What would happen if Guido was hit by a bus?”

These days, Python creator Guido van Rossum is still the ultimate arbiter of proposed
Python changes. He was officially anointed the BDFL—Benevolent Dictator for Life—
of Python at the first Python conference and still makes final yes and no decisions on
language changes (and apart from 3.0’s deliberate incompatibilities, has usually said
no: a good thing in the programming languages domain, because Python tends to
change slowly and in backward-compatible ways).
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But Python’s user base helps support the language, work on extensions, fix bugs, and
so on. It is a true community project. In fact, Python development is now a completely
open process—anyone can inspect the latest source code files or submit patches by
visiting a website (see http://www.python.org for details).

As an open source package, Python development is really in the hands of a very large
cast of developers working in concert around the world—so much so that if the BDFL
ever does pass the torch, Python will almost certainly continue to enjoy the kind of
support its users have come to expect. Though not without pitfalls of their own, open
source projects by nature tend to reflect the needs of their user communities more than
either individuals or shareholders.

Given Python’s popularity, bus attacks seem less threatening now than they once did.
Of course, [ can’t speak for Guido.

Step 4: Adding Console Interaction

So far, our database program consists of class instances stored in a shelve file, as coded
in the preceding section. It’s sufficient as a storage medium, but it requires us to run
scripts from the command line or type code interactively in order to view or process its
content. Improving on this is straightforward: simply code more general programs that
interact with users, either from a console window or from a full-blown graphical
interface.

A Console Shelve Interface

Let’s start with something simple. The most basic kind of interface we can code would
allow users to type keys and values in a console window in order to process the database
(instead of writing Python program code). Example 1-21, for instance, implements a
simple interactive loop that allows a user to query multiple record objects in the shelve
by key.

Example 1-21. PP4E\Preview\peopleinteract_query.py

# interactive queries

import shelve

fieldnames = ('name', 'age', 'job', 'pay')
maxfield = max(len(f) for f in fieldnames)
db = shelve.open('class-shelve')

while True:
key = input('\nKey? => ") # key or empty line, exc at eof
if not key: break
try:
record = db[key] # fetch by key, show in console
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except:
print('No such key "%s"!' % key)
else:
for field in fieldnames:
print(field.ljust(maxfield), '=>', getattr(record, field))

This script uses the getattr built-in function to fetch an object’s attribute when given
its name string, and the 1just left-justify method of strings to align outputs (max
field, derived from a generator expression, is the length of the longest field name).
When run, this script goes into a loop, inputting keys from the interactive user (tech-
nically, from the standard input stream, which is usually a console window) and dis-
playing the fetched records field by field. An empty line ends the session. If our shelve
of class instances is still in the state we left it near the end of the last section:
...\PP4E\Preview> dump_db_classes.py
bob =>
Bob Smith 30000
sue =>
Sue Jones 50000.0
tom =>
Tom Doe 65000.0

Smith
Doe

We can then use our new script to query the object database interactively, by key:

...\PP4E\Preview> peopleinteract_query.py

Key? => sue

name => Sue Jones
age => 45

job => hardware
pay => 50000.0

Key? => nobody
No such key "nobody"!

Key? =>

Example 1-22 goes further and allows interactive updates. For an input key, it inputs
values for each field and either updates an existing record or creates a new object and
stores it under the key.

Example 1-22. PP4E\Preview\peopleinteract_update.py

# interactive updates

import shelve

from person import Person

fieldnames = ('name', 'age', 'job', 'pay')

db = shelve.open('class-shelve")
while True:

key = input('\nKey? => ')

if not key: break
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if key in db:
record = db[key] # update existing record

else:

# or make/store new rec

record = Person(name='?"', age='?") # eval: quote strings
for field in fieldnames:

currval = getattr(record, field)

newtext = input('\t[%s]=%s\n\t\tnew?=>"' % (field, currval))

if newtext:

db[key]
db.close()

setattr(record, field, eval(newtext))
= record

Notice the use of eval in this script to convert inputs (as usual, that allows any Python
object type, but it means you must quote string inputs explicitly) and the use of
setattr call to assign an attribute given its name string. When run, this script allows
any number of records to be added and changed; to keep the current value of a record’s
field, press the Enter key when prompted for a new value:

Key? => tom

[name]=Tom Doe
new?=>
[age]=50
new?=>56
[job]=None
new?=>"mgr"
[pay]=65000.0
new?=>90000

Key? => nobody

Key? =>

[name]=?

new?=>"'John Doh'
[age]=?

new?=>55
[job]=None

new?=>
[pay]=0

new?=>None

This scriptis still fairly simplistic (e.g., errors aren’t handled), but using it is much easier
than manually opening and modifying the shelve at the Python interactive prompt,
especially for nonprogrammers. Run the query script to check your work after an up-
date (we could combine query and update into a single script if this becomes too cum-
bersome, albeit at some cost in code and user-experience complexity):

Key? =>
name =>
age =>
job =>
pay =>

Key? =>
name =>

tom
Tom Doe
56

mgxr
90000

nobody
John Doh
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age => 55
job => None
pay => None

Key? =>

Step 5: Adding a GUI

The console-based interface approach of the preceding section works, and it may be
sufficient for some users assuming that they are comfortable with typing commands in
a console window. With just a little extra work, though, we can add a GUI that is more
modern, easier to use, less error prone, and arguably sexier.

GUI Basics

As we’ll see later in this book, a variety of GUI toolkits and builders are available for
Python programmers: tkinter, wxPython, PyQt, PythonCard, Dabo, and more. Of
these, tkinter ships with Python, and it is something of a de facto standard.

tkinter is a lightweight toolkit and so meshes well with a scripting language such as
Python; it’s easy to do basic things with tkinter, and it’s straightforward to do more
advanced things with extensions and OOP-based code. As an added bonus, tkinter
GUIs are portable across Windows, Linux/Unix, and Macintosh; simply copy the
source code to the machine on which you wish to use your GUI. tkinter doesn’t come
with all the bells and whistles of larger toolkits such as wxPython or PyQt, but that’s
a major factor behind its relative simplicity, and it makes it ideal for getting started in
the GUI domain.

Because tkinter is designed for scripting, coding GUIs with it is straightforward. We’ll
study all of its concepts and tools later in this book. But as a first example, the first
program in tkinter is just a few lines of code, as shown in Example 1-23.

Example 1-23. PP4E\Preview\tkinter001.py

from tkinter import *
Label(text="Spam").pack()
mainloop()

From the tkinter module (really, a module package in Python 3), we get screen device
(a.k.a. “widget”) construction calls such as Label; geometry manager methods such as
pack; widget configuration presets such as the TOP and RIGHT attachment side hints we’ll
use later for pack; and the mainloop call, which starts event processing.

This isn’t the most useful GUI ever coded, but it demonstrates tkinter basics and it
builds the fully functional window shown in Figure 1-1 in just three simple lines of
code. Its window is shown here, like all GUISs in this book, running on Windows 7; it
works the same on other platforms (e.g., Mac OS X, Linux, and older versions of Win-
dows), but renders in with native look and feel on each.
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R e o =5

Spam

Figure 1-1. tkinter001.py window

You can launch this example in IDLE, from a console command line, or by clicking its
icon—the same way you can run other Python scripts. tkinter itself is a standard part
of Python and works out-of-the-box on Windows and others, though you may need
extra configuration or install steps on some computers (more details later in this book).

It’s not much more work to code a GUI that actually responds to a user: Exam-
ple 1-24 implements a GUI with a button that runs the reply function each time it is
pressed.

Example 1-24. PP4E\Previeuw\ tkinter101.py

from tkinter import *
from tkinter.messagebox import showinfo

def reply():
showinfo(title="popup', message='Button pressed!")

window = Tk()

button = Button(window, text='press', command=reply)
button.pack()

window.mainloop()

This example still isn’t very sophisticated—it creates an explicit Tk main window for
the application to serve as the parent container of the button, and it builds the simple
window shown in Figure 1-2 (in tkinter, containers are passed in as the first argument
when making a new widget; they default to the main window). But this time, each time
you click the “press” button, the program responds by running Python code that pops
up the dialog window in Figure 1-3.

Bk o)

press

Figure 1-2. tkinter101.py main window

Notice that the pop-up dialog looks like it should for Windows 7, the platform on
which this screenshot was taken; again, tkinter gives us a native look and feel that is
appropriate for the machine on which it is running. We can customize this GUI in many
ways (e.g., by changing colors and fonts, setting window titles and icons, using photos
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i popup @
'io;,:' Button pressed!

Figure 1-3. tkinter101.py common dialog pop up

on buttons instead of text), but part of the power of tkinter is that we need to set only
the options we are interested in tailoring.

Using OOP for GUIs

All of our GUI examples so far have been top-level script code with a function for
handling events. In larger programs, it is often more useful to code a GUI as a subclass
of the tkinter Frame widget—a container for other widgets. Example 1-25 shows our
single-button GUI recoded in this way as a class.

Example 1-25. PP4E\Preview\tkinter102.py

from tkinter import *
from tkinter.messagebox import showinfo

class MyGui(Frame):
def _init_ (self, parent=None):
Frame. init_ (self, parent)
button = Button(self, text='press', command=self.reply)
button.pack()
def reply(self):
showinfo(title="popup', message='Button pressed!")
if _name__ == '_main__':
window = MyGui()
window.pack()
window.mainloop()

The button’s event handler is a bound method—self.reply, an object that remembers
both self and reply when later called. This example generates the same window and
pop up as Example 1-24 (Figures 1-2 and 1-3); but because it is now a subclass of
Frame, it automatically becomes an attachable component—i.e., we can add all of the
widgets this class creates, as a package, to any other GUI, just by attaching this Frame
to the GUI. Example 1-26 shows how.
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Example 1-26. PP4E\Preview\attachgui.py

from tkinter import *
from tkinter102 import MyGui

# main app window
mainwin = Tk()
Label(mainwin, text=__name__).pack()

# popup window

popup = Toplevel()

Label(popup, text='Attach').pack(side=LEFT)

MyGui(popup) . pack(side=RIGHT) # attach my frame
mainwin.mainloop()

This example attaches our one-button GUI to a larger window, here a Toplevel pop-
up window created by the importing application and passed into the construction call
as the explicit parent (you will also get a Tk main window; as we’ll learn later, you always
do, whether it is made explicit in your code or not). Our one-button widget package is
attached to the right side of its container this time. If you run this live, you’ll get the
scene captured in Figure 1-4; the “press” button is our attached custom Frame.

Button pressed!

OK

Figure 1-4. Attaching GUIs

Moreover, because MyGui is coded as a class, the GUI can be customized by the usual
inheritance mechanism; simply define a subclass that replaces the parts that differ. The
reply method, for example, can be customized this way to do something unique, as
demonstrated in Example 1-27.

Example 1-27. PP4E\Preview\customizegui.py

from tkinter import mainloop
from tkinter.messagebox import showinfo
from tkinter102 import MyGui
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class CustomGui(MyGui): # inherit init
def reply(self): # replace reply
showinfo(title="popup', message="'Ouch!")

if _name__ == '_main__':
CustomGui().pack()
mainloop()

When run, this script creates the same main window and button as the original MyGui
class. But pressing its button generates a different reply, as shown in Figure 1-5, because
the custom version of the reply method runs.

Figure 1-5. Customizing GUIs

Although these are still small GUIs, they illustrate some fairly large ideas. As we’ll see
later in the book, using OOP like this for inheritance and attachment allows us to reuse
packages of widgets in other programs—calculators, text editors, and the like can be
customized and added as components to other GUIs easily if they are classes. As we’ll
also find, subclasses of widget class can provide a common appearance or standardized
behavior for all their instances—similar in spirit to what some observers might call GUI
styles or themes. It’s a normal byproduct of Python and OOP.

Getting Input from a User

As a final introductory script, Example 1-28 shows how to input data from the user in
an Entry widget and display it in a pop-up dialog. The lambda it uses defers the call to
the reply function so that inputs can be passed in—a common tkinter coding pattern;
without the lambda, reply would be called when the button is made, instead of when
itis later pressed (we could also use ent as a global variable within reply, but that makes
it less general). This example also demonstrates how to change the icon and title of a
top-level window; here, the window icon file is located in the same directory as the
script (if the icon call in this script fails on your platform, try commenting-out the call;
icons are notoriously platform specific).

44 | Chapter1: ASneak Preview



Example 1-28. PP4E\Preview\tkinter103.py

from tkinter import *
from tkinter.messagebox import showinfo

def reply(name):
showinfo(title="Reply', message="Hello %s!' % name)

top = Tk()
top.title('Echo")
top.iconbitmap('py-blue-trans-out.ico")

Label(top, text="Enter your name:").pack(side=TOP)

ent = Entry(top)

ent.pack(side=TOP)

btn = Button(top, text="Submit", command=(lambda: reply(ent.get())))
btn.pack(side=LEFT)

top.mainloop()

Asis, this example is just three widgets attached to the Tk main top-level window; later
we’ll learn how to use nested Frame container widgets in a window like this to achieve
a variety of layouts for its three widgets. Figure 1-6 gives the resulting main and pop-
up windows after the Submit button is pressed. We'll see something very similar later
in this chapter, but rendered in a web browser with HTML.

FPecho [ = | @ [ &

Enter your name: @

Bob

Submit W HelloBob!

Figure 1-6. Fetching input from a user

The code we’ve seen so far demonstrates many of the core concepts in GUI program-
ming, but tkinter is much more powerful than these examples imply. There are more
than 20 widgets in tkinter and many more ways to input data from a user, including
multiple-line text, drawing canvases, pull-down menus, radio and check buttons, and
scroll bars, as well as other layout and event handling mechanisms. Beyond tkinter
itself, both open source extensions such as PMW, as well as the Tix and ttk toolkits
now part of Python’s standard library, can add additional widgets we can use in our
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Python tkinter GUIs and provide an even more professional look and feel. To hint at
what is to come, let’s put tkinter to work on our database of people.

A GUI Shelve Interface

For our database application, the first thing we probably want is a GUI for viewing the
stored data—a form with field names and values—and a way to fetch records by key.
It would also be useful to be able to update a record with new field values given its key
and to add new records from scratch by filling out the form. To keep this simple, we’ll
use a single GUI for all of these tasks. Figure 1-7 shows the window we are going to
code asitlooks in Windows 7; the record for the key sue has been fetched and displayed
(our shelve is as we last left it again). This record is really an instance of our class in our
shelve file, but the user doesn’t need to care.

7 People Shelve E@

key |sue
name|'Sue Jones'
age 45

Jjob [|'hardware’
pay |50000.0

Fetch | Update Quit

Figure 1-7. peoplegui.py main display/input window

Coding the GUI

Also, to keep this simple, we’ll assume that all records in the database have the same
sets of fields. It would be a minor extension to generalize this for any set of fields (and
come up with a general form GUI constructor tool in the process), but we’ll defer such
evolutions to later in this book. Example 1-29 implements the GUI shown in Figure 1-7.

Example 1-29. PP4E\Preview\peoplegui.py

nnn

Implement a GUI for viewing and updating class instances stored in a shelve;
the shelve lives on the machine this script runs on, as 1 or more local files;

nnn

from tkinter import *

from tkinter.messagebox import showerror
import shelve

shelvename = 'class-shelve'

fieldnames = ('name', 'age', 'job', 'pay')
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def makeWidgets():
global entries
window = Tk()
window.title('People Shelve')
form = Frame(window)
form.pack()
entries = {}
for (ix, label) in enumerate(('key',) + fieldnames):
lab = Label(form, text=label)
ent = Entry(form)
lab.grid(row=ix, column=0)
ent.grid(row=ix, column=1)
entries[label] = ent
Button(window, text="Fetch", command=fetchRecord).pack(side=LEFT)
Button(window, text="Update", command=updateRecord).pack(side=LEFT)
Button(window, text="Quit", command=window.quit).pack(side=RICHT)
return window

def fetchRecord():
key = entries['key'].get()

try:

record = db[key] # fetch by key, show in GUI
except:

showerror(title="Error', message='No such key!")
else:

for field in fieldnames:
entries[field].delete(0, END)
entries[field].insert(0, repr(getattr(record, field)))

def updateRecord():
key = entries['key'].get()

if key in db:

record = db[key] # update existing record
else:

from person import Person # make/store new one for key

record = Person(name='?"', age='?") # eval: strings must be quoted
for field in fieldnames:

setattr(record, field, eval(entries[field].get()))
db[key] = record

db = shelve.open(shelvename)

window = makeWidgets()

window.mainloop()

db.close() # back here after quit or window close

This script uses the widget grid method to arrange labels and entries, instead of pack;
as we'll see later, gridding arranges by rows and columns, and so it is a natural for forms
that horizontally align labels with entries well. We’ll also see later that forms can usually
be laid out just as nicely using pack with nested row frames and fixed-width labels.
Although the GUI doesn’t handle window resizes well yet (that requires configuration
options we’ll explore later), adding this makes the grid and pack alternatives roughly
the same in code size.
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Notice how the end of this script opens the shelve as a global variable and starts the
GUI, the shelve remains open for the lifespan of the GUI (mainloop returns only after
the main window is closed). As we’ll see in the next section, this state retention is very
different from the web model, where each interaction is normally a standalone program.
Also notice that the use of global variables makes this code simple but unusable outside
the context of our database; more on this later.

Using the GUI

The GUI we’re building is fairly basic, but it provides a view on the shelve file and
allows us to browse and update the file without typing any code. To fetch a record from
the shelve and display it on the GUI, type its key into the GUT’s “key” field and click
Fetch. To change a record, type into its input fields after fetching it and click Update;
the values in the GUI will be written to the record in the database. And to add a new
record, fill out all of the GUT’s fields with new values and click Update—the new record
will be added to the shelve file using the key and field inputs you provide.

In other words, the GUT’s fields are used for both display and input. Figure 1-8 shows
the scene after adding a new record (via Update), and Figure 1-9 shows an error dialog
pop up issued when users try to fetch a key that isn’t present in the shelve.

7 People Shelve EI@

key |tomtom
name | Tom Tom’
age |40

Jjob |'sales’
pay (40000

Fetch | Update Quit

Figure 1-8. peoplegui.py after adding a new persistent object

7 Error @
':@:' No such key!

Figure 1-9. peoplegui.py common error dialog pop up
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Notice how we’re using repr again to display field values fetched from the shelve and
eval to convert field values to Python objects before they are stored in the shelve. As
mentioned previously, this is potentially dangerous if someone sneaks some malicious
code into our shelve, but we’ll finesse such concerns for now.

Keep in mind, though, that this scheme means that strings must be quoted in input
fields other than the key—they are assumed to be Python code. In fact, you could type
an arbitrary Python expression in an input field to specify a value for an update. Typing
"Tom"*3 in the name field, for instance, would set the name to TomTomTom after an update
(for better or worse!); fetch to see the result.

Even though we now have a GUI for browsing and changing records, we can still check
our work by interactively opening and inspecting the shelve file or by running scripts
such as the dump utility in Example 1-19. Remember, despite the fact that we’re now
viewing records in a GUI's windows, the database is a Python shelve file containing
native Python class instance objects, so any Python code can access it. Here is the dump
script at work after adding and changing a few persistent objects in the GUI:
...\PP4E\Preview> python dump_db_classes.py
sue =>
Sue Jones 50000.0
bill =>
bill 9999
nobody =>
John Doh None
tomtom =>
Tom Tom 40000
tom =>
Tom Doe 90000
bob =>
Bob Smith 30000
peg =>
14
Smith
Doe

Future directions

Although this GUI does the job, there is plenty of room for improvement:

* As coded, this GUI is a simple set of functions that share the global list of input
fields (entries) and a global shelve (db). We might instead pass db in to
makeWidgets, and pass along both these two objects as function arguments to the
callback handlers using the lambda trick of the prior section. Though not crucial in
a script this small, as a rule of thumb, making your external dependencies explicit
like this makes your code both easier to understand and reusable in other contexts.

* We could also structure this GUI as a class to support attachment and customiza-
tion (globals would become instance attributes), though it’s unlikely that we’ll need
to reuse such a specific GUI.
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* More usefully, we could pass in the fieldnames tuple as an input parameter to the
functions here to allow them to be used for other record types in the future. Code
at the bottom of the file would similarly become a function with a passed-in shelve
filename, and we would also need to pass in a new record construction call to the
update function because Person could not be hardcoded. Such generalization is
beyond the scope of this preview, but it makes for a nice exercise if you are so
inclined. Later, I'll also point you to a suggested reading example in the book
examples package, PyForm, which takes a different approach to generalized form
construction.

* To make this GUI more user friendly, it might also be nice to add an index window
that displays all the keys in the database in order to make browsing easier. Some
sort of verification before updates might be useful as well, and Delete and Clear
buttons would be simple to code. Furthermore, assuming that inputs are Python
code may be more bother than it is worth; a simpler input scheme might be easier
and safer. (I won'’t officially say these are suggested exercises too, but it sounds like
they could be.)

* Wecould also support window resizing (as we’ll learn, widgets can grow and shrink
with the window) and provide an interface for calling methods available on stored
instances’ classes too (as is, the pay field can be updated, but there is no way to
invoke the giveRaise method).

* If we plan to distribute this GUI widely, we might package it up as a standalone
executable program—a frozen binary in Python terminology—using third-party
tools such as Py2Exe, PyInstaller, and others (search the Web for pointers). Such
a program can be run directly without installing Python on the receiving end, be-
cause the Python bytecode interpreter is included in the executable itself.

I'll leave all such extensions as points to ponder, and revisit some of them later in this
book.

Before we move on, two notes. First, I should mention that even more graphical pack-
ages are available to Python programmers. For instance, if you need to do graphics
beyond basic windows, the tkinter Canvas widget supports freeform graphics. Third-
party extensions such as Blender, OpenGL, VPython, PIL, VTK, Maya, and PyGame
provide even more advanced graphics, visualization, and animation tools for use with
Python scripts. Moreover, the PMW, Tix, and ttk widget kits mentioned earlier extend
tkinter itself. See Python’s library manual for Tix and ttk, and try the PyPI site or a web
search for third-party graphics extensions.

And in deference to fans of other GUI toolkits such as wxPython and PyQt, I should
also note that there are other GUI options to choose from and that choice is sometimes
very subjective. tkinter is shown here because it is mature, robust, fully open source,
well documented, well supported, lightweight, and a standard part of Python. By most
accounts, it remains the standard for building portable GUIs in Python.
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Other GUI toolkits for Python have pros and cons of their own, discussed later in this
book. For example, some exchange code simplicity for richer widget sets. wxPython,
for example, is much more feature-rich, but it’s also much more complicated to use.
By and large, though, other toolkits are variations on a theme—once you’ve learned
one GUI toolkit, others are easy to pick up. Because of that, we’ll focus on learning one
toolkit in its entirety in this book instead of sampling many partially.

Although they are free to employ network access at will, programs written with tradi-
tional GUISs like tkinter generally run on a single, self-contained machine. Some con-
sider web pages to be a kind of GUI as well, but you’ll have to read the next and final
section of this chapter to judge that for yourself.

Fora Good Time...

There’s much more to the tkinter toolkit than we’ve touched on in this preview, of
course, and we’ll study it in depth in this book. As another quick example to hint at
what’s possible, though, the following script, fungui.py, uses the Python random module
to pick from a list, makes new independent windows with Toplevel, and uses the tkinter
after callback to loop by scheduling methods to run again after a number of
milliseconds:

from tkinter import *

import random

fontsize = 30

colors = ['red', 'green', 'blue', 'yellow', 'orange', 'cyan', 'purple']

def onSpam():
popup = Toplevel()
color = random.choice(colors)
Label(popup, text='Popup', bg='black', fg=color).pack(fill=BOTH)
mainLabel.config(fg=color)

def onFlip():
mainLabel.config(fg=random.choice(colors))
main.after(250, onFlip)

def onGrow():
global fontsize
fontsize += 5
mainLabel.config(font=("'arial', fontsize, 'italic'))
main.after(100, onGrow)

main = Tk()

mainLabel = Label(main, text='Fun Gui!', relief=RAISED)
mainLabel.config(font=("'arial', fontsize, 'italic'), fg='cyan',bg="'navy')
mainLabel.pack(side=TOP, expand=YES, fill=BOTH)

Button(main, text='spam', command=onSpam).pack(fill=X)

Button(main, text='flip', command=onFlip).pack(fill=X)

Button(main, text='grow', command=onGrow).pack(fill=X)

main.mainloop()

Run this on your own to see how it works. It creates a main window with a custom
label and three buttons—one button pops up a new window with a randomly colored
label, and the other two kick off potentially independent timer loops, one of which
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keeps changing the color used in the main window, and another that keeps expanding
the main window label’s font. Be careful if you do run this, though; the colors flash,
and the label font gets bigger 10 times per second, so be sure you are able to kill the
main window before it gets away from you. Hey—I warned you!

Step 6: Adding a Web Interface

GUT interfaces are easier to use than command lines and are often all we need to simplify
access to data. By making our database available on the Web, though, we can open it
up to even wider use. Anyone with Internet access and a web browser can access the
data, regardless of where they are located and which machine they are using. Anything
from workstations to cell phones will suffice. Moreover, web-based interfaces require
only a web browser; there is no need to install Python to access the data except on the
single-server machine. Although traditional web-based approaches may sacrifice some
of the utility and speed of in-process GUI toolkits, their portability gain can be
compelling.

As we’ll also see later in this book, there are a variety of ways to go about scripting
interactive web pages of the sort we’ll need in order to access our data. Basic server-
side CGI scripting is more than adequate for simple tasks like ours. Because it’s perhaps
the simplest approach, and embodies the foundations of more advanced techniques,
CGI scripting is also well-suited to getting started on the Web.

For more advanced applications, a wealth of toolkits and frameworks for Python—
including Django, TurboGears, Google’s App Engine, pylons, web2py, Zope, Plone,
Twisted, CherryPy, Webware, mod_python, PSP, and Quixote—can simplify common
tasks and provide tools that we might otherwise need to code from scratch in the CGI
world. Though they pose a new set of tradeoffs, emerging technologies such as Flex,
Silverlight, and pyjamas (an AJAX-based port of the Google Web Toolkit to Python,
and Python-to-JavaScript compiler) offer additional paths to achieving interactive or
dynamic user-interfaces in web pages on clients, and open the door to using Python in
Rich Internet Applications (RIAs).

I'll say more about these tools later. For now, let’s keep things simple and code a CGI
script.

(Gl Basics

CGI scripting in Python is easy as long as you already have a handle on things like
HTML forms, URLs, and the client/server model of the Web (all topics we’ll address
in detail later in this book). Whether you’re aware of all the underlying details or not,
the basic interaction model is probably familiar.

In a nutshell, a user visits a website and receives a form, coded in HTML, to be filled
out in his or her browser. After submitting the form, a script, identified within either
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the form or the address used to contact the server, is run on the server and produces
another HTML page as a reply. Along the way, data typically passes through three
programs: from the client browser, to the web server, to the CGI script, and back again
to the browser. This is a natural model for the database access interaction we’re after—
users can submit a database key to the server and receive the corresponding record as
a reply page.

We'll go into CGI basics in depth later in this book, but as a first example, let’s start
out with a simple interactive example that requests and then echoes back a user’s name
in a web browser. The first page in this interaction is just an input form produced by
the HTML file shown in Example 1-30. This HTML file is stored on the web server
machine, and it is transferred to the web browser running on the client machine upon
request.

Example 1-30. PP4E\Preview\cgi101.html

<html>

<title>Interactive Page</title>

<body>

<form method=POST action="cgi-bin/cgi1o1.py">
<P><B>Enter your name:</B>
<P><input type=text name=user>
<P><input type=submit>

</form>

</body></html>

Notice how this HTML form names the script that will process its input on the server
in its action attribute. This page is requested by submitting its URL (web address).
When received by the web browser on the client, the input form that this code produces
is shown in Figure 1-10 (in Internet Explorer here).

% Interactive Page - Windows Internet Explorer E@

Q@v |’é http://localhast/cgil0Lhtm '| ] ‘ 4y | X || ¥ Google p -l

o7 Fevorites | @ Interactive Page

Enter your name:

Bob

Submit Query

Done @ Internet | Protected Mode: On g v ®125% -

Figure 1-10. ¢gi101.html input form page

When this input form is submitted, a web server intercepts the request (more on the
web server in a moment) and runs the Python CGI script in Example 1-31. Like the
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HTML file, this Python script resides on the same machine as the web server; it’s run
on the server machine to handle the inputs and generate a reply to the browser on the
client. It uses the cgi module to parse the form’s input and insert it into the HTML
reply stream, properly escaped. The cgi module gives us a dictionary-like interface to
form inputs sent by the browser, and the HTML code that this script prints winds up
rendering the next page on the client’s browser. In the CGI world, the standard output
stream is connected to the client through a socket.

Example 1-31. PP4E\Preview\cgi-bin\cgi101.py
#!/usr/bin/python

import cgi

form = cgi.FieldStorage() # parse form data
print('Content-type: text/html\n") # hdr plus blank line
print('<title>Reply Page</title>") # html reply page

if not 'user' in form:
print('<h1i>Who are you?</h1>")
else:
print('<hi>Hello <i>%s</i>!</h1>" % cgi.escape(form[ user'].value))

And if all goes well, we receive the reply page shown in Figure 1-11—essentially, just
an echo of the data we entered in the input page. The page in this figure is produced
by the HTML printed by the Python CGI script running on the server. Along the way,
the user’s name was transferred from a client to a server and back again—potentially
across networks and miles. This isn’t much of a website, of course, but the basic prin-
ciples here apply, whether you’re just echoing inputs or doing full-blown e-whatever.

% Reply Page - Windows Internet Explorer E@

@Qv |’G http://localhost/cgi-bin/cgil0l.py v| @ ‘ 9 | A H 2| Google R -

o7 Favorites | @ Reply Page

Hello Bob!

Done @ Internet | Protected Mode: On g v ®125% -

Figure 1-11. ¢gi101.py script reply page for input form

If you have trouble getting this interaction to run on Unix-like systems, you may need
to modify the path to your Python in the #! line at the top of the script file and make
it executable with a chmod command, but this is dependent on your web server (again,
more on the missing server piece in a moment).
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Also note that the CGI script in Example 1-31 isn’t printing complete HTML: the
<html> and <body> tags of the static HTML file in Example 1-30 are missing. Strictly
speaking, such tags should be printed, but web browsers don’t mind the omissions,
and this book’s goal is not to teach legalistic HTML; see other resources for more on
HTML.

GUIs versus the Web

Before moving on, it’s worth taking a moment to compare this basic CGI example with
the simple GUI of Example 1-28 and Figure 1-6. Here, we’re running scripts on a server
to generate HTML that is rendered in a web browser. In the GUI, we make calls to
build the display and respond to events within a single process and on a single machine.
The GUI runs multiple layers of software, but not multiple programs. By contrast, the
CGI approach is much more distributed—the server, the browser, and possibly the
CGI script itself run as separate programs that usually communicate over a network.

Because of such differences, the standalone GUI model may be simpler and more direct:
there is no intermediate server, replies do not require invoking a new program, no
HTML needs to be generated, and the full power of a GUI toolkit is at our disposal.
On the other hand, a web-based interface can be viewed in any browser on any com-
puter and only requires Python on the server machine.

And just to muddle the waters further, a GUI can also employ Python’s standard library
networking tools to fetch and display data from a remote server (that’s how web
browsers do their work internally), and some newer frameworks such as Flex, Silver-
light, and pyjamas provide toolkits that support more full-featured user interfaces
within web pages on the client (the RIAs I mentioned earlier), albeit at some added cost
in code complexity and software stack depth. We’ll revisit the trade-offs of the GUI
and CGI schemes later in this book, because it’s a major design choice today. First, let’s
preview a handful of pragmatic issues related to CGI work before we apply it to our
people database.

Running a Web Server

Of course, to run CGI scripts at all, we need a web server that will serve up our HTML
and launch our Python scripts on request. The server is a required mediator between
the browser and the CGI script. If you don’t have an account on a machine that has
such a server available, you’ll want to run one of your own. We could configure and
run a full production-level web server such as the open source Apache system (which,
by the way, can be tailored with Python-specific support by the mod_python extension).
For this chapter, however, I instead wrote a simple web server in Python using the code
in Example 1-32.

We'll revisit the tools used in this example later in this book. In short, because Python
provides precoded support for various types of network servers, we can build a
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CGl-capable and portable HTTP web server in just 8 lines of code (and a whopping 16
if we include comments and blank lines).

As we’ll see later in this book, it’s also easy to build proprietary network servers with
low-level socket calls in Python, but the standard library provides canned implemen-
tations for many common server types, web based or otherwise. The socketserver
module, for instance, supports threaded and forking versions of TCP and UDP servers.
Third-party systems such as Twisted provide even more implementations. For serving
up web content, the standard library modules used in Example 1-32 provide what
we need.

Example 1-32. PP4E\Preview\webserver.py

nun

Implement an HTTP web server in Python that knows how to run server-side
CGI scripts coded in Python; serves files and scripts from current working
dir; Python scripts must be stored in webdir\cgi-bin or webdir\htbin;

nun

import os, sys

from http.server import HTTPServer, CGIHTTPRequestHandler

webdir = '.' # where your html files and cgi-bin script directory live
port = 80 # default http://localhost/, else use http://localhost:xxxx/

os.chdir(webdir) # run in HTML root dir
srvraddr = ("", port) # my hostname, portnumber
srvrobj = HTTPServer(srvraddr, CGIHTTPRequestHandler)

srvrobj.serve_forever() # run as perpetual daemon

The classes this script uses assume that the HTML files to be served up reside in the
current working directory and that the CGI scripts to be run live in a cgi-bin or htbin
subdirectory there. We’re using a cgi-bin subdirectory for scripts, as suggested by the
filename of Example 1-31. Some web servers look at filename extensions to detect CGI
scripts; our script uses this subdirectory-based scheme instead.

To launch the server, simply run this script (in a console window, by an icon click, or
otherwise); it runs perpetually, waiting for requests to be submitted from browsers and
other clients. The server listens for requests on the machine on which it runs and on
the standard HTTP port number 80. To use this script to serve up other websites, either
launch it from the directory that contains your HTML files and a cgi-bin subdirectory
that contains your CGI scripts, or change its webdir variable to reflect the site’s root
directory (it will automatically change to that directory and serve files located there).

But where in cyberspace do you actually run the server script? If you look closely
enough, you’ll notice that the server name in the addresses of the prior section’s ex-
amples (near the top right of the browser after the http://) is always localhost. To keep
this simple, I am running the web server on the same machine as the web browser;
that’s what the server name “localhost” (and the equivalent IP address “127.0.0.1”)
means. That is, the client and server machines are the same: the client (web browser)
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and server (web server) are just different processes running at the same time on the
same computer.

Though not meant for enterprise-level work, this turns out to be a great way to test
CGI scripts—you can develop them on the same machine without having to transfer
code back to a remote server machine after each change. Simply run this script from
the directory that contains both your HTML files and a cgi-bin subdirectory for scripts
and then use http://localhost/... in your browser to access your HTML and script files.
Here is the trace output the web server script produces in a Windows console window
that is running on the same machine as the web browser and launched from the direc-
tory where the HTML files reside:

...\PP4E\Preview> python webserver.py

mark-VAIO - - [28/Jan/2010 18:34:01] "GET /cgi101.html HTTP/1.1" 200 -

mark-VAIO - - [28/Jan/2010 18:34:12] "POST /cgi-bin/cgi1ol.py HTTP/1.1" 200 -

mark-VAIO - - [28/Jan/2010 18:34:12] command: C:\Python31\python.exe -u C:\Users

\mark\Stuff\Books\4E\PP4E\dev\Examples\PP4E\Preview\cgi-bin\cgiiol.py ""

mark-VAIO - - [28/Jan/2010 18:34:13] CGI script exited OK

mark-VAIO - - [28/Jan/2010 18:35:25] "GET /cgi-bin/cgi101.py?user=Sue+Smith HTTP

/1.1" 200 -

mark-VAIO - - [28/Jan/2010 18:35:25] command: C:\Python31\python.exe -u C:\Users

\mark\Stuff\Books\4E\PP4E\dev\Examples\PP4E\Preview\cgi-bin\cgil1o1.py

mark-VAIO - - [28/Jan/2010 18:35:26] CGI script exited OK

One pragmatic note here: you may need administrator privileges in order to run a server
on the script’s default port 80 on some platforms: either find out how to run this way
or try running on a different port. To run this server on a different port, change the port
number in the script and name it explicitly in the URL (e.g., hitp://localhost:8888/).
We'll learn more about this convention later in this book.

And to run this server on a remote computer, upload the HTML files and CGI scripts
subdirectory to the remote computer, launch the server script on that machine, and
replace “localhost” in the URLs with the domain name or IP address of your server
machine (e.g., http://www.myserver.com/). When running the server remotely, all the
interaction will be as shown here, but inputs and replies will be automatically shipped
across network connections, not routed between programs running on the same
computer.

To delve further into the server classes our web server script employs, see their imple-
mentation in Python’s standard library (C:\Python31\Lib for Python 3.1); one of the
major advantages of open source system like Python is that we can always look under
the hood this way. In Chapter 15, we’ll expand Example 1-32 to allow the directory
name and port numbers to be passed in on the command line.

Using Query Strings and urllib

In the basic CGI example shown earlier, we ran the Python script by filling out and
submitting a form that contained the name of the script. Really, server-side CGI scripts
can be invoked in a variety of ways—either by submitting an input form as shown so
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far or by sending the server an explicit URL (Internet address) string that contains inputs
at the end. Such an explicit URL can be sent to a server either inside or outside of a
browser; in a sense, it bypasses the traditional input form page.

For instance, Figure 1-12 shows the reply generated by the server after typing a URL of
the following form in the address field at the top of the web browser (+ means a space

here):
http://localhost/cgi-bin/cgi101.py?user=Sue+Smith

a Reply Page - Windows Internet Explorer EI@
@uv |’é ttp://localhost/cgi-bin/cgil0l.py?user=Sue+Smith v| M | 43 | X H 4| Google o -]

1.0 Favorites | (&8 Reply Page

Hello Sue Smith!

Done & Intemet | Protected Mode: On g v RI1D% -

Figure 1-12. ¢cgi101.py reply to GET-style query parameters

The inputs here, known as query parameters, show up at the end of the URL after
the ?; they are not entered into a form’s input fields. Adding inputs to URLs is some-
times called a GET request. Our original input form uses the POST method, which
instead ships inputs in a separate step. Luckily, Python CGI scripts don’t have to dis-
tinguish between the two; the cgi module’s input parser handles any data submission
method differences for us.

It’s even possible, and often useful, to submit URLs with inputs appended as query
parameters completely outside any web browser. The Python urllib module package,
for instance, allows us to read the reply generated by a server for any valid URL. In
effect, it allows us to visit a web page or invoke a CGI script from within another script;
your Python code, instead of a browser, acts as the web client. Here is this module in
action, run from the interactive command line:

>>> from urllib.request import urlopen

>>> conn = urlopen('http://localhost/cgi-bin/cgi101.py?user=Sue+Smith"')

>>> reply = conn.read()

>>> reply
b'<title>Reply Page</title>\n<hi>Hello <i>Sue Smith</i>!</h1>\n'

>>> urlopen('http://localhost/cgi-bin/cgi101.py').read()
b'<title>Reply Page</title>\n<hi>Who are you?</h1>\n'

>>> urlopen('http://localhost/cgi-bin/cgi101.py?user=Bob").read()
b'<title>Reply Page</title>\n<hi>Hello <i>Bob</i>!</h1>\n’
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The urllib module package gives us a file-like interface to the server’s reply for a URL.
Notice that the output we read from the server is raw HTML code (normally rendered
by a browser). We can process this text with any of Python’s text-processing tools,
including:

* String methods to search and split
* The re regular expression pattern-matching module

* Full-blown HTML and XML parsing support in the standard library, including
html.parser, as well as SAX-, DOM-, and ElementTree—style XML parsing tools.

When combined with such tools, the urllib package is a natural for a variety of
techniques—ad-hoc interactive testing of websites, custom client-side GUIs, “screen
scraping” of web page content, and automated regression testing systems for remote
server-side CGI scripts.

Formatting Reply Text

One last fine point: because CGI scripts use text to communicate with clients, they
need to format their replies according to a set of rules. For instance, notice how Ex-
ample 1-31 adds a blank line between the reply’s header and its HTML by printing an
explicit newline (\n) in addition to the one print adds automatically; this is a required
separator.

Also note how the text inserted into the HTML reply is run through the cgi.escape
(a.k.a. html.escape in Python 3.2; see the note under “Python HTML and URL Escape
Tools” on page 1203) call, just in case the input includes a character that is special in
HTML. For example, Figure 1-13 shows the reply we receive for form input Bob </i>
Smith—the </i> in the middle becomes 81t;/i8gt; in the reply, and so doesn’t interfere
with real HTML code (use your browser’s view source option to see this for yourself);
if not escaped, the rest of the name would not be italicized.

% Reply Page - Windows Internet Explorer E@

@Qv |’G http://localhost/cgi-bin/cgil0l.py v| @ ‘ 4 | A H | Google el -

Y Favorites @ Reply Page

Hello Bob </i> Smith!

Done & Internet | Protected Mode: On g v ®1X5% -

Figure 1-13. Escaping HTML characters
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Escaping text like this isn’t always required, but it is a good rule of thumb when its
content isn’t known; scripts that generate HTML have to respect its rules. As we’ll see
later in this book, a related call, urllib.parse. quote, applies URL escaping rules to text.
As we’ll also see, larger frameworks often handle text formatting tasks for us.

A Web-Based Shelve Interface

Now, to use the CGI techniques of the prior sections for our database application, we
basically just need a bigger input and reply form. Figure 1-14 shows the form we’ll
implement for accessing our database in a web browser.

@ People Input Form - Windows Internet Explorer IEI@
@Uv "e http://localhost/peoplecgi.htm V‘ 4 ‘ +3 ‘ X H 4| Google R |
L. Favorites @ people Input Form
Key bob
Name
Age
Job [
Pay
Done & Internet | Protected Mode: On e T RI1D% v

Figure 1-14. peoplecgi.html input page

Coding the website

To implement the interaction, we’ll code an initial HTML input form, as well as a
Python CGI script for displaying fetch results and processing update requests. Exam-
ple 1-33 shows the input form’s HTML code that builds the page in Figure 1-14.

Example 1-33. PP4E\Preview\peoplecgi.html

<html>

<title>People Input Form</title>

<body>

<form method=POST action="cgi-bin/peoplecgi.py">
<table>
<tr><th>Key <td><input type=text name=key>
<tr><th>Name<td><input type=text name=name>
<tr><th>Age <td><input type=text name=age>
<tr><th>Job <td><input type=text name=job>
<tr><th>Pay <td><input type=text name=pay>
</table>
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<p>
<input type=submit value="Fetch", name=action>
<input type=submit value="Update", name=action>
</form>
</body></html>

To handle form (and other) requests, Example 1-34 implements a Python CGI script
that fetches and updates our shelve’s records. It echoes back a page similar to that
produced by Example 1-33, but with the form fields filled in from the attributes of
actual class objects in the shelve database.

As in the GUI, the same web page is used for both displaying results and inputting
updates. Unlike the GUI, this script is run anew for each step of user interaction, and
it reopens the database each time (the reply page’s action field provides a link back to
the script for the next request). The basic CGI model provides no automatic memory
from page to page, so we have to start from scratch each time.

Example 1-34. PP4E\Preview\cgi-bin\peoplecgi.py

Implement a web-based interface for viewing and updating class instances
stored in a shelve; the shelve lives on server (same machine if localhost)

import cgi, shelve, sys, os # cgi.test() dumps inputs
shelvename = 'class-shelve' # shelve files are in cwd
fieldnames = ('name', 'age', 'job', 'pay')

form = cgi.FieldStorage() # parse form data
print('Content-type: text/html") # hdr, blank line is in replyhtml
sys.path.insert(0, os.getcwd()) # so this and pickler find person
# main html template
replyhtml = """
<html>
<title>People Input Form</title>
<body>
<form method=POST action="peoplecgi.py">

<table>

<tr><th>key<td><input type=text name=key value="%(key)s">

$ROWSS

</table>

<p>

<input type=submit value="Fetch", name=action>
<input type=submit value="Update", name=action>
</form>
</body></html>

nnn

# insert html for data rows at $ROWS$
rowhtml = '<tr><th>%s<td><input type=text name=%s value="%%(%s)s">\n"
rowshtml = "'
for fieldname in fieldnames:
rowshtml += (rowhtml % ((fieldname,) * 3))
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replyhtml = replyhtml.replace('$ROWS$', rowshtml)

def htmlize(adict):
new = adict.copy()

for field in fieldnames: # values may have &, >, etc.
value = new[field] # display as code: quoted
new[field] = cgi.escape(repr(value)) # html-escape special chars
return new

def fetchRecord(db, form):

try:
key = form['key'].value
record = db[key]
fields = record. dict # use attribute dict
fields['key'] = key # to fill reply string
except:

fields = dict.fromkeys(fieldnames, '?")
fields['key'] = 'Missing or invalid key!'
return fields

def updateRecord(db, form):
if not 'key' in form:
fields = dict.fromkeys(fieldnames, '?")
fields['key'] = 'Missing key input!’

else:
key = form['key'].value
if key in db:
record = db[key] # update existing record
else:
from person import Person # make/store new one for key
record = Person(name='?"', age='?") # eval: strings must be quoted

for field in fieldnames:
setattr(record, field, eval(form[field].value))
db[key] = record
fields = record. dict
fields['key'] = key
return fields

db = shelve.open(shelvename)
action = form['action'].value if 'action' in form else None
if action == 'Fetch':
fields = fetchRecord(db, form)
elif action == 'Update':
fields = updateRecord(db, form)

else:
fields = dict.fromkeys(fieldnames, '?') # bad submit button value
fields['key'] = 'Missing or invalid action!'

db.close()

print(replyhtml % htmlize(fields)) # fill reply from dict

This is a fairly large script, because it has to handle user inputs, interface with the
database, and generate HTML for the reply page. Its behavior is fairly straightforward,
though, and similar to the GUI of the prior section.
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Directories, string formatting, and security

A few fine points before we move on. First of all, make sure the web server script we
wrote earlier in Example 1-32 is running before you proceed; it’s going to catch our
requests and route them to our script.

Also notice how this script adds the current working directory (os.getcwd) to the
sys.path module search path when it first starts. Barring a PYTHONPATH change, this is
required to allow both the pickler and this script itself to import the person module one
level up from the script. Because of the new way the web server runs CGI scripts in
Python 3, the current working directory isn’t added to sys.path, even though the
shelve’s files are located there correctly when opened. Such details can vary per server.

The only other feat of semi-magic the CGI script relies on is using a record’s attribute
dictionary (__dict_ ) as the source of values when applying HTML escapes to field
values and string formatting to the HTML reply template string in the last line of the
script. Recall that a %(key)code replacement target fetches a value by key from a
dictionary:

>>> D = {'say': 5, 'get': 'shrubbery'}

>>> D[ 'say']

5

>>> S = '%(say)s => %(get)s' % D
>»>> S

'5 => shrubbery'

By using an object’s attribute dictionary, we can refer to attributes by name in the format
string. In fact, part of the reply template is generated by code. If its structure is con-
fusing, simply insert statements to print replyhtml and to call sys.exit, and run from
a simple command line. This is how the table’s HTML in the middle of the reply is
generated (slightly formatted here for readability):

<table>

<tr><th>key<td><input type=text name=key value="%(key)s">

<tr><th>name<td><input type=text name=name value="%(name)s">

<tr><th>age<td><input type=text name=age value="%(age)s">

<tr><th>job<td><input type=text name=job value="%(job)s">

<tr><th>pay<td><input type=text name=pay value="%(pay)s">
</table>

This text is then filled in with key values from the record’s attribute dictionary by string
formatting at the end of the script. This is done after running the dictionary through a
utility to convert its values to code text with repr and escape that text per HTML
conventions with cgi.escape (again, the last step isn’t always required, butit’s generally
a good practice).

These HTML reply lines could have been hardcoded in the script, but generating them
from a tuple of field names is a more general approach—we can add new fields in the
future without having to update the HTML template each time. Python’s string pro-
cessing tools make this a snap.
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In the interest of fairness, I should point out that Python’s newer str.format method
could achieve much the same effect as the traditional % format expression used by this
script, and it provides specific syntax for referencing object attributes which to some
might seem more explicit than using __dict__ keys:

>>> D = {'say': 5, 'get': 'shrubbery'}

>>> "%(say)s => %(get)s' % D # expression: key reference
'5 => shrubbery'
>>> '{say} => {get}'.format(**D) # method: key reference

'5 => shrubbery’

>>> from person import Person
>>> bob = Person('Bob', 35)

>>> "%(name)s, %(age)s' % bob. dict__ # expression: _dict  keys
'Bob, 35'

>>> "{o.name} => {0.age}'.format(bob) # method: attribute syntax
'Bob => 35'

Because we need to escape attribute values first, though, the format method call’s at-
tribute syntax can’t be used directly this way; the choice is really between both tech-
nique’s key reference syntax above. (At this writing, it’s not clear which formatting
technique may come to dominate, so we take liberties with using either in this book;
if one replaces the other altogether someday, you’ll want to go with the winner.)

In the interest of security, I also need to remind you one last time that the eval call used
in this script to convert inputs to Python objects is powerful, but not secure—it happily
runs any Python code, which can perform any system modifications that the script’s
process has permission to make. If you care, you’ll need to trust the input source, run
in a restricted environment, or use more focused input converters like int and float.
This is generally a larger concern in the Web world, where request strings might arrive
from arbitrary sources. Since we’re all friends here, though, we’ll ignore the threat.

Using the website

Despite the extra complexities of servers, directories, and strings, using the web inter-
face is as simple as using the GUI, and it has the added advantage of running on any
machine with a browser and Web connection. To fetch a record, fill in the Key field
and click Fetch; the script populates the page with field data grabbed from the corre-
sponding class instance in the shelve, as illustrated in Figure 1-15 for key bob.

Figure 1-15 shows what happens when the key comes from the posted form. As usual,
you can also invoke the CGI script by instead passing inputs on a query string at the
end of the URL; Figure 1-16 shows the reply we get when accessing a URL of the
following form:

http://localhost/cgi-bin/peoplecgi.py?action=Fetch8key=sue
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& People Input Form - Windows Internet Explorer EI@

@Uv ‘@;} http://localhost/cgi-bin/peoplecgi.py v‘ b ‘ 4y ‘ X || 2] Google £~

1.[ Favorites | @3 People Input Form

key bob
name 'Bob Smith'
age 42

job 'software’
pay 30000

-

Done @ Internet | Protected Mode: On e v ®I15% -

Figure 1-15. peoplecgi.py reply page

@ People Input Form - Windows Internet Explorer EI@

@Uv ‘@J http://localhost/cgi-bin/peoplecgi.py?action=Fetch&key=sue V‘ kA ‘ +y ‘ x ‘ M| Google L ~|

1.7 Favorites | 3 People Input Form

key sue
name 'Sue.Jones'

age 45

1

job ‘'hardware'

pay 50000.0

Done & Internet | Protected Mode: On fy v HI125% -

Figure 1-16. peoplecgi.py reply for query parameters

As we’ve seen, such a URL can be submitted either within your browser or by scripts
that use tools such as the urllib package. Again, replace “localhost” with your server’s
domain name if you are running the script on a remote machine.

To update a record, fetch it by key, enter new values in the field inputs, and click
Update; the script will take the input fields and store them in the attributes of the class
instance in the shelve. Figure 1-17 shows the reply we get after updating sue.

Step 6: Adding a Web Interface | 65




Finally, adding a record works the same as in the GUI: fill in a new key and field values
and click Update; the CGI script creates a new class instance, fills out its attributes,
and stores it in the shelve under the new key. There really is a class object behind the
web page here, but we don’t have to deal with the logic used to generate it.

Figure 1-18 shows a record added to the database in this way.

1.[ Favorites | @3 People Input Form

@ People Input Form - Windows Internet Explorer EI@
@U' ‘@;} http://localhost/cgi-bin/peoplecgi.py v‘ b ‘ 4y ‘ X || 2] Google £~

key sue
name 'Sue Smith'
age 45
job ‘hardware'

pay 60000

Done @ Internet | Protected Mode: On o v ®125%

-

Figure 1-17. peoplecgi.py update reply

1.7 Favorites | & People Input Form

& People Input Form - Windows Internet Explorer EI@
@Uv “'é_[ http://localhost/cgi-bin/peoplecgi.py v‘ ] ‘ 4y ‘ X || 4| Google £~

key guido
name 'GvR'
age None
job 'BDFL'
pay '<shrubbery>'

Done @ Internet | Protected Mode: On o v ®125%

Figure 1-18. peoplecgi.py after adding a new record

In principle, we could also update and add records by submitting a URL—either from

a browser or from a script—such as:

http://localhost/cgi-bin/
peoplecgi.py?action=Update&key=sue&pay=50000&name=Sue+Smith& ...more...
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Except for automated tools, though, typing such a long URL will be noticeably more
difficult than filling out the input page. Here is part of the reply page generated for the
“guido” record’s display of Figure 1-18 (use your browser’s “view page source” option
to see this for yourself). Note how the < and > characters are translated to HTML escapes
with cgi.escape before being inserted into the reply:

<tr><th>key<td><input type=text name=key value="guido">

<tr><th>name<td><input type=text name=name value="'GvR'">

<tr><th>age<td><input type=text name=age value="None">

<tr><th>job<td><input type=text name=job value="'BDFL'">
<tr><th>pay<td><input type=text name=pay value="'81t;shrubberydgt;'">

As usual, the standard library urllib module package comes in handy for testing our
CGI script; the output we get back is raw HTML, but we can parse it with other standard
library tools and use it as the basis of a server-side script regression testing system run
on any Internet-capable machine. We might even parse the server’s reply fetched this
way and display its data in a client-side GUI coded with tkinter; GUIs and web pages
are not mutually exclusive techniques. The last test in the following interaction shows
a portion of the error message page’s HTML that is produced when the action is missing
or invalid in the inputs, with line breaks added for readability:

>>> from urllib.request import urlopen

>>> url = 'http://localhost/cgi-bin/peoplecgi.py?action=Fetch8key=sue'

>>> urlopen(url).read()

b'<html>\n<title>People Input Form</title>\n<body>\n

<form method=POST action="peoplecgi.py">\n  <table>\n

<tr><th>key<td><input type=text name=key value="sue">\n

<tr><th>name<td><input type=text name=name value="\'Sue Smith\'">\n
<tr><t ..more deleted...

>>> urlopen('http://localhost/cgi-bin/peoplecgi.py').read()

b'<html>\n<title>People Input Form</title>\n<body>\n

<form method=POST action="peoplecgi.py">\n <table>\n

<tr><th>key<td><input type=text name=key value="Missing or invalid action!">\n
<tr><th>name<td><input type=text name=name value="\'?\'">\n

<tr><th>age<td><input type=text name=age value="\'?\"'">\n<tr> ...more deleted...

In fact, if you’re running this CGI script on “localhost,” you can use both the last
section’s GUI and this section’s web interface to view the same physical shelve file—
these are just alternative interfaces to the same persistent Python objects. For compar-
ison, Figure 1-19 shows what the record we saw in Figure 1-18 looks like in the GUI;
it’s the same object, but we are not contacting an intermediate server, starting other
scripts, or generating HTML to view it.

And as before, we can always check our work on the server machine either interactively
or by running scripts. We may be viewing a database through web browsers and GUIs,
but, ultimately, it is just Python objects in a Python shelve file:

>>> import shelve

>>> db = shelve.open('class-shelve')

>>> db[ 'sue'].name
'Sue Smith'
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& People Shelve E@

key |guido
name |'GvR’
age |None
job |'BDFL'
pay |‘=shrubbery='

Fetch | Update Quit

Figure 1-19. Same object displayed in the GUI

>>> db[ 'guido’].job

'BDFL'

>>> list(db[ 'guido'].name)

['G', 'v', 'R']

>>> list(db.keys())

['sue', 'bill', ‘'nobody', 'tomtom', 'tom', 'bob', 'peg', 'guido']

Here in action again is the original database script we wrote in Example 1-19 before
we moved on to GUIs and the web; there are many ways to view Python data:

... \PP4E\Preview> dump_db_classes.py
sue =>

Sue Smith 60000
bill =>

bill 9999
nobody =>

John Doh None
tomtom =>

Tom Tom 40000
tom =>

Tom Doe 90000
bob =>

Bob Smith 30000
peg =>

14
guido =>

GVvR <shrubbery>
Smith
Doe

Future directions
Naturally, there are plenty of improvements we could make here, too:
* The HTML code of the initial input page in Example 1-33, for instance, is some-

what redundant with the script in Example 1-34, and it could be automatically
generated by another script that shares common information.
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In fact, we might avoid hardcoding HTML in our script completely if we use one
of the HTML generator tools we’ll meet later, including HTMLgen (a system for
creating HTML from document object trees) and PSP (Python Server Pages, a
server-side HTML templating system for Python similar to PHP and ASP).

For ease of maintenance, it might also be better to split the CGI script’s HTML
code off to a separate file in order to better divide display from logic (different
parties with possibly different skill sets could work on the different files).

Moreover, if this website might be accessed by many people simultaneously, we
would have to add file locking or move to a database such as ZODB or MySQL to
support concurrent updates. ZODB and other full-blown database systems would
also provide transaction rollbacks in the event of failures. For basic file locking,
the os.open call and its flags provide the tools we need.

ORMs (object relational mappers) for Python such as SQLObject and SQLAlchemy
mentioned earlier might also allow us to gain concurrent update support of an
underlying relational database system, but retain our Python class view of the data.

In the end, if our site grows much beyond a few interactive pages, we might also
migrate from basic CGI scripting to a more complete web framework such as one
of those mentioned at the start of this section— Django, TurboGears, pyjamas,
and others. If we must retain information across pages, tools such as cookies, hid-
den inputs, mod_python session data, and FastCGI may help too.

If our site eventually includes content produced by its own users, we might tran-
sition to Plone, a popular open source Python- and Zope-based site builder that,
using a workflow model, delegates control of site content to its producers.

And if wireless or cloud interfaces are on our agenda, we might eventually migrate
our system to cell phones using a Python port such as those available for scripting
Nokia platforms and Google’s Android, or to a cloud-computing platform such as
Google’s Python-friendly App Engine. Python tends to go wherever technology
trends lead.

For now, though, both the GUI and web-based interfaces we’ve coded get the job done.

The End of the Demo

And that concludes our sneak preview demo of Python in action. We’ve explored data
representation, OOP, object persistence, GUIs, and website basics. We haven’t studied
any of these topics in any great depth. Hopefully, though, this chapter has piqued your
curiosity about Python applications programming.

In the rest of this book, we’ll delve into these and other application programming tools
and topics, in order to help you put Python to work in your own programs. In the next
chapter, we begin our tour with the systems programming and administration tools
available to Python programmers.
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The Python “Secret Handshake”

I’ve been involved with Python for some 18 years now as of this writing in 2010, and I
have seen it grow from an obscure language into one that is used in some fashion in
almost every development organization and a solid member of the top four or five most
widely-used programming languages in the world. It has been a fun ride.

But looking back over the years, it seems to me that if Python truly has a single legacy,
itis simply that Python has made quality a more central focus in the development world.
It was almost inevitable. A language that requires its users to line up code for readability
can’t help but make people raise questions about good software practice in general.

Probably nothing summarizes this aspect of Python life better than the standard li-
brary this module—a sort of Easter egg in Python written by Python core developer
Tim Peters, which captures much of the design philosophy behind the language. To
see this for yourself, go to any Python interactive prompt and import the module
(naturally, it’s available on all platforms):

>>> import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!
>>>

Worth special mention, the “Explicit is better than implicit” rule has become known
as “EIBTI” in the Python world—one of Python’s defining ideas, and one of its sharpest
contrasts with other languages. As anyone who has worked in this field for more than
a few years can attest, magic and engineering do not mix. Python has not always fol-
lowed all of these guidelines, of course, but it comes very close. And if Python’s main
contribution to the software world is getting people to think about such things, it seems
like a win. Besides, it looked great on the T-shirt.
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PART II
System Programming

This first in-depth part of the book presents Python’s system programming tools—
interfaces to services in the underlying operating system as well as the context of an
executing program. It consists of the following chapters:

Chapter 2
This chapter provides a comprehensive first look at commonly used system inter-
face tools. It starts slowly and is meant in part as a reference for tools and techniques
we’ll be using later in the book.

Chapter 3
This chapter continues the tour begun in Chapter 2, by showing how Python’s
system interfaces are applied to process standard streams, command-line argu-
ments, shell variables, and more.

Chapter 4
This chapter continues our survey of system interfaces by focusing on tools and
techniques used to process files and directories in Python. We’ll learn about binary
files, tree walkers, and so on.

Chapter 5
This chapter is an introduction to Python’s library support for running programs
in parallel. Here, you’ll find coverage of threads, process forks, pipes, sockets,
signals, queues, and the like.

Chapter 6
This last chapter is a collection of typical system programming examples that draw
upon the material of the prior four chapters. Python scripts here perform real tasks;
among other things, they split and join files, compare and copy directory trees, test
other programs, and search and launch files.

Although this part of the book emphasizes systems programming tasks, the tools
introduced are general-purpose and are used often in later chapters.






CHAPTER 2
System Tools

“The os.path to Knowledge”

This chapter begins our in-depth look at ways to apply Python to real programming
tasks. In this and the following chapters, you’ll see how to use Python to write system
tools, GUIs, database applications, Internet scripts, websites, and more. Along the way,
we’ll also study larger Python programming concepts in action: code reuse, maintain-
ability, object-oriented programming (OOP), and so on.

In this first part of the book, we begin our Python programming tour by exploring
the systems application domain—scripts that deal with files, programs, and the general
environment surrounding a program. Although the examples in this domain focus on
particular kinds of tasks, the techniques they employ will prove to be useful in later
parts of the book as well. In other words, you should begin your journey here, unless
you are already a Python systems programming wizard.

Why Python Here?

Python’s system interfaces span application domains, but for the next five chapters,
most of our examples fall into the category of system tools—programs sometimes called
command-line utilities, shell scripts, system administration, systems programming,
and other permutations of such words. Regardless of their title, you are probably al-
ready familiar with this sort of script; these scripts accomplish such tasks as processing
files in a directory, launching test programs, and so on. Such programs historically have
been written in nonportable and syntactically obscure shell languages such as DOS
batch files, csh, and awk.

Even in this relatively simple domain, though, some of Python’s better attributes shine
brightly. For instance, Python’s ease of use and extensive built-in library make it simple
(and even fun) to use advanced system tools such as threads, signals, forks, sockets,
and their kin; such tools are much less accessible under the obscure syntax of shell
languages and the slow development cycles of compiled languages. Python’s support
for concepts like code clarity and OOP also help us write shell tools that can be read,
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maintained, and reused. When using Python, there is no need to start every new script
from scratch.

Moreover, we’ll find that Python not only includes all the interfaces we need in order
to write system tools, but it also fosters script portability. By employing Python’s stand-
ard library, most system scripts written in Python are automatically portable to all major
platforms. For instance, you can usually run in Linux a Python directory-processing
script written in Windows without changing its source code at all—simply copy over
the source code. Though writing scripts that achieve such portability utopia requires
some extra effort and practice, if used well, Python could be the only system scripting
tool you need to use.

The Next Five Chapters
To make this part of the book easier to study, I have broken it down into five chapters:

* Inthis chapter, I'll introduce the main system-related modules in overview fashion.
We’ll meet some of the most commonly used system tools here for the first time.

* In Chapter 3, we continue exploring the basic system interfaces by studying their
role in core system programming concepts: streams, command-line arguments,
environment variables, and so on.

* Chapter 4 focuses on the tools Python provides for processing files, directories,
and directory trees.

* In Chapter 5, we’ll move on to cover Python’s standard tools for parallel
processing—processes, threads, queues, pipes, signals, and more.

* Chapter 6 wraps up by presenting a collection of complete system-oriented pro-
grams. The examples here are larger and more realistic, and they use the tools
introduced in the prior four chapters to perform real, practical tasks. This collection
includes both general system scripts, as well as scripts for processing directories of
files.

Especially in the examples chapter at the end of this part, we will be concerned as much
with system interfaces as with general Python development concepts. We'll see non-
object-oriented and object-oriented versions of some examples along the way, for in-
stance, to help illustrate the benefits of thinking in more strategic ways.

“Batteries Included”

This chapter, and those that follow, deal with both the Python language and its standard
library—a collection of precoded modules written in Python and C that are automat-
ically installed with the Python interpreter. Although Python itself provides an easy-to-
use scripting language, much of the real action in Python development involves this
vast library of programming tools (a few hundred modules at last count) that ship with
the Python package.
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In fact, the standard library is so powerful that it is not uncommon to hear Python
described as batteries included—a phrase generally credited to Frank Stajano meaning
that most of what you need for real day-to-day work is already there for importing.
Python’s standard library, while not part of the core language per se, is a standard part
of the Python system and you can expect it to be available wherever your scripts run.
Indeed, this is a noteworthy difference between Python and some other scripting lan-
guages—because Python comes with so many library tools “out of the box,” supple-
mental sites like Perl’s CPAN are not as important.

As we’ll see, the standard library forms much of the challenge in Python programming.
Once you’ve mastered the core language, you’ll find that you’ll spend most of your time
applying the built-in functions and modules that come with the system. On the other
hand, libraries are where most of the fun happens. In practice, programs become most
interesting when they start using services external to the language interpreter: networks,
files, GUIs, XML, databases, and so on. All of these are supported in the Python
standard library.

Beyond the standard library, there is an additional collection of third-party packages
for Python that must be fetched and installed separately. As of this writing, you can
find most of these third-party extensions via general web searches, and using the links
at http://www.python.org and at the PyPI website (accessible from http://www.python
.org). Some third-party extensions are large systems in their own right; NumPy, Django,
and VPython, for instance, add vector processing, website construction, and visuali-
zation, respectively.

If you have to do something special with Python, chances are good that either its support
is part of the standard Python install package or you can find a free and open source
module that will help. Most of the tools we’ll employ in this text are a standard part of
Python, but I'll be careful to point out things that must be installed separately. Of
course, Python’s extreme code reuse idiom also makes your programs dependent on
the code you reuse; in practice, though, and as we’ll see repeatedly in this book, pow-
erful libraries coupled with open source access speed development without locking you
into an existing set of features or limitations.

System Scripting Overview

To begin our exploration of the systems domain, we will take a quick tour through the
standard library sys and os modules in this chapter, before moving on to larger system
programming concepts. As you can tell from the length of their attribute lists, both of
these are large modules—the following reflects Python 3.1 running on Windows 7

outside IDLE:

C:\...\PP4E\System> python

Python 3.1.1 (r311:74483, Aug 17 2009, 17:02:12) [MSC v.1500 32 bit (...)] on win32
Type "help", "copyright", "credits" or "license" for more information.

>>> import sys, os

>>> len(dir(sys)) # 65 attributes

65
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>>> len(dir(os)) # 122 on Windows, more on Unix
122

>>> len(dir(os.path)) # a nested module within os

52

The content of these two modules may vary per Python version and platform. For
example, os is much larger under Cygwin after building Python 3.1 from its source code
there (Cygwin is a system that provides Unix-like functionality on Windows; it is dis-
cussed further in “More on Cygwin Python for Windows” on page 185):

$ ./python.exe

Python 3.1.1 (r311:74480, Feb 20 2010, 10:16:52)

[GCC 3.4.4 (cygming special, gdc 0.12, using dmd 0.125)] on cygwin

Type "help", "copyright", "credits" or "license" for more information.

>>> import sys, os

>>> len(dir(sys))

64

>>> len(dir(os))

217

>>> len(dir(os.path))

51

As I’'m not going to demonstrate every item in every built-in module, the first thing I
want to do is show you how to get more details on your own. Officially, this task also

serves as an excuse for introducing a few core system scripting concepts; along the way,
we’ll code a first script to format documentation.

Python System Modules

Most system-level interfaces in Python are shipped in just two modules: sys and os.
That’s somewhat oversimplified; other standard modules belong to this domain too.
Among them are the following:

glob
For filename expansion
socket
For network connections and Inter-Process Communication (IPC)
threading, thread, queue
For running and synchronizing concurrent threads
time, timeit
For accessing system time details
subprocess, multiprocessing
For launching and controlling parallel processes

signal, select, shutil, tempfile, and others
For various other system-related tasks

Third-party extensions such as pySerial (a serial port interface), Pexpect (an Expect
work-alike for controlling cross-program dialogs), and even Twisted (a networking
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framework) can be arguably lumped into the systems domain as well. In addition, some
built-in functions are actually system interfaces as well—the open function, for example,
interfaces with the file system. But by and large, sys and os together form the core of
Python’s built-in system tools arsenal.

In principle at least, sys exports components related to the Python interpreter itself
(e.g., the module search path), and os contains variables and functions that map to the
operating system on which Python is run. In practice, this distinction may not always
seem clear-cut (e.g., the standard input and output streams show up in sys, but they
are arguably tied to operating system paradigms). The good news is that you’ll soon
use the tools in these modules so often that their locations will be permanently stamped
on your memory.’

The os module also attempts to provide a portable programming interface to the un-
derlying operating system; its functions may be implemented differently on different
platforms, but to Python scripts, they look the same everywhere. And if that’s still not
enough, the os module also exports a nested submodule, os.path, which provides a
portable interface to file and directory processing tools.

Module Documentation Sources

As you can probably deduce from the preceding paragraphs, learning to write system
scripts in Python is mostly a matter of learning about Python’s system modules. Luckily,
there are a variety of information sources to make this task easier—from module at-
tributes to published references and books.

For instance, if you want to know everything that a built-in module exports, you can
read its library manual entry; study its source code (Python is open source software,
after all); or fetch its attribute list and documentation string interactively. Let’s import
sys in Python 3.1 and see what it has to offer:

C:\...\PP4E\System> python

>>> import sys

>>> dir(sys)

['_displayhook ', ' doc_ ', ' excepthook ', ' name ', ' package ',
' stderr ', ' stdin_ ', ' stdout_ ', ' clear type cache', ' current frames',
' _getframe', 'api_version', 'argv', 'builtin module_names', 'byteorder',

'call tracing', 'callstats', 'copyright', 'displayhook', 'dllhandle’,
'dont_write_bytecode', 'exc_info', 'excepthook', 'exec_prefix', 'executable’,
‘exit', 'flags', 'float_info', 'float_repr_style', 'getcheckinterval’,
'getdefaultencoding', 'getfilesystemencoding', 'getprofile', 'getrecursionlimit’,
'getrefcount’, 'getsizeof', 'gettrace', 'getwindowsversion', 'hexversion',
'int_info', 'intern', 'maxsize', 'maxunicode', 'meta_path', 'modules', 'path’,
'path_hooks', 'path_importer cache', 'platform', 'prefix', 'psi', 'ps2’,
'setcheckinterval', 'setfilesystemencoding', 'setprofile', 'setrecursionlimit’,

* They may also work their way into your subconscious. Python newcomers sometimes describe a phenomenon
in which they “dream in Python” (insert overly simplistic Freudian analysis here...).
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'settrace', 'stderr', 'stdin', 'stdout', 'subversion', 'version', 'version_info',

'warnoptions', 'winver']
The dir function simply returns a list containing the string names of all the attributes
in any object with attributes; it’s a handy memory jogger for modules at the interactive
prompt. For example, we know there is something called sys.version, because the
name version came back in the dir result. If that’s not enough, we can always consult
the doc__ string of built-in modules:

>>> sys.__doc__

"This module provides access to some objects used or maintained by the\ninterpre

ter and to functions that interact strongly with the interpreter.\n\nDynamic obj

ects:\n\nargv -- command line arguments; argv[0] is the script pathname if known

\npath -- module search path; path[0] is the script directory, else ''\nmodules

-- dictionary of loaded modules\n\ndisplayhook -- called to show results in an i
...lots of text deleted here..."

Paging Documentation Strings

The doc__ built-in attribute just shown usually contains a string of documentation,
butit may look a bit weird when displayed this way—it’s one long string with embedded
end-line characters that print as \n, not as a nice list of lines. To format these strings
for a more humane display, you can simply use a print function-call statement:

>>> print(sys.__doc_)

This module provides access to some objects used or maintained by the

interpreter and to functions that interact strongly with the interpreter.

Dynamic objects:

argv -- command line arguments; argv[0] is the script pathname if known
path -- module search path; path[0] is the script directory, else '’
modules -- dictionary of loaded modules

...lots of lines deleted here...

The print built-in function, unlike interactive displays, interprets end-line characters
correctly. Unfortunately, print doesn’t, by itself, do anything about scrolling or paging
and so can still be unwieldy on some platforms. Tools such as the built-in help func-
tion can do better:

>>> help(sys)
Help on built-in module sys:

NAME
sys

FILE
(built-in)

MODULE DOCS
http://docs.python.org/library/sys
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DESCRIPTION
This module provides access to some objects used or maintained by the
interpreter and to functions that interact strongly with the interpreter.

Dynamic objects:

argv -- command line arguments; argv[0] is the script pathname if known
path -- module search path; path[0] is the script directory, else '’
modules -- dictionary of loaded modules

...lots of lines deleted here...

The help function is one interface provided by the PyDoc system—standard library
code that ships with Python and renders documentation (documentation strings, as
well as structural details) related to an object in a formatted way. The format is either
like a Unix manpage, which we get for help, oran HTML page, which is more grandiose.
It’s a handy way to get basic information when working interactively, and it’s a last
resort before falling back on manuals and books.

A Custom Paging Script

The help function we just met is also fairly fixed in the way it displays information;
although it attempts to page the display in some contexts, its page size isn’t quite right
on some of the machines I use. Moreover, it doesn’t page at all in the IDLE GUI, instead
relying on manual use if the scrollbar—potentially painful for large displays. When 1
want more control over the way help text is printed, I usually use a utility script of my
own, like the one in Example 2-1.

Example 2-1. PP4E\System\more.py

nnn

split and interactively page a string or file of text

nnn

def more(text, numlines=15):
lines = text.splitlines() # like split('\n') but no '' at end
while lines:
chunk = lines[:numlines]
lines = lines[numlines:]
for line in chunk: print(line)
if lines and input('More?') not in ['y', 'Y']: break

if _name__ == '_main__':
import sys # when run, not imported
more(open(sys.argv[1]).read(), 10) # page contents of file on cmdline

The meat of this file is its more function, and if you know enough Python to be qualified
to read this book, it should be fairly straightforward. It simply splits up a string around
end-line characters, and then slices off and displays a few lines at a time (15 by default)
to avoid scrolling off the screen. A slice expression, lines[:15], gets the first 15 items
in a list, and lines[15:] gets the rest; to show a different number of lines each time,
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pass a number to the numlines argument (e.g., the last line in Example 2-1 passes 10 to
the numlines argument of the more function).

The splitlines string object method call that this script employs returns a list of sub-
strings splitatline ends (e.g., ["1ine", "line",...]). Analternative splitlines method
does similar work, but retains an empty line at the end of the result if the last line is
\n terminated:

>>> line = 'aaa\nbbb\nccc\n'

>>> line.split('\n")
[‘aaa', 'bbb', 'ccc', '']

>>> line.splitlines()

['aaa', 'bbb', 'ccc']
As we’ll see more formally in Chapter 4, the end-of-line character is normally always
\n (which stands for a byte usually having a binary value of 10) within a Python script,
no matter what platform it is run upon. (If you don’t already know why this matters,
DOS \r characters in text are dropped by default when read.)

String Method Basics

Now, Example 2-1 is a simple Python program, but it already brings up three important
topics that merit quick detours here: it uses string methods, reads from a file, and is set
up to be run or imported. Python string methods are not a system-related tool per se,
but they see action in most Python programs. In fact, they are going to show up
throughout this chapter as well as those that follow, so here is a quick review of some
of the more useful tools in this set. String methods include calls for searching and
replacing:

>>> mystr = 'xxxSPAMxxx'

>>> mystr.find('SPAM") # return first offset
3

>>> mystr = 'xxaaxxaa'

>>> mystr.replace('aa’, 'SPAM") # global replacement
' xxSPAMXXSPAM'

The find call returns the offset of the first occurrence of a substring, and replace does
global search and replacement. Like all string operations, replace returns a new string
instead of changing its subject in-place (recall that strings are immutable). With these
methods, substrings are just strings; in Chapter 19, we’ll also meet a module called
re that allows regular expression patterns to show up in searches and replacements.

In more recent Pythons, the in membership operator can often be used as an alternative
to find if all we need is a yes/no answer (it tests for a substring’s presence). There are
also a handful of methods for removing whitespace on the ends of strings—especially
useful for lines of text read from a file:

>>> mystr = 'xxxSPAMxxx'
>>> 'SPAM' in mystr # substring search/test
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True

>>> 'Ni' in mystr
False

>>> mystr.find('Ni')
-1

>>> mystr = '\t Ni\n'
>>> mystr.strip()

Ny

>>> mystr.rstrip()

"\t Ni'

# when not found

# remove whitespace

# same, but just on right side

String methods also provide functions that are useful for things such as case conver-
sions, and a standard library module named string defines some useful preset variables,

among other things:

>>> mystr = 'SHRUBBERY'
>>> mystr.lower()
'shrubbery’

>>> mystr.isalpha()
True
>>> mystr.isdigit()
False

>>> import string
>>> string.ascii_lowercase
'abcdefghijklmnopgrstuvwxyz'

>>> string.whitespace
" \t\n\r\xob\xoc'

# case converters

# content tests

# case presets: for 'in', etc.

# whitespace characters

There are also methods for splitting up strings around a substring delimiter and putting
them back together with a substring in between. We’ll explore these tools later in this
book, but as an introduction, here they are at work:

>>> mystr = 'aaa,bbb,ccc’
>>> mystr.split(',’
['aaa', 'bbb', 'ccc']

>>> mystr = 'a b\nc\nd'
>>> mystr.split()
[Ial, |bl, Icl’ ld']

>>> delim = 'NI'
>>> delim.join(['aaa', 'bbb', 'ccc'])
'aaaNIbbbNIccc'
>>> " '.join(['A', 'dead', 'parrot'])
'A dead parrot'

# split into substrings list

# default delimiter: whitespace

# join substrings list

# add a space between
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>>> chars = list('Lorreta') # convert to characters list
>>> chars

[IL.’ IOI’ Irl’ Irl’ lel’ 'tl, Ial]

>>> chars.append('!")

>>> ''.join(chars) # to string: empty delimiter
'Lorreta!’

These calls turn out to be surprisingly powerful. For example, a line of data columns
separated by tabs can be parsed into its columns with a single split call; the more.py
script uses the splitlines variant shown earlier to split a string into a list of line strings.
In fact, we can emulate the replace call we saw earlier in this section with a split/join
combination:

>>> mystr = 'xxaaxxaa'

>>> "SPAM'.join(mystr.split('aa')) # str.replace, the hard way!
" xxSPAMXXSPAM'

For future reference, also keep in mind that Python doesn’t automatically convert
strings to numbers, or vice versa; if you want to use one as you would use the other,
you must say so with manual conversions:

>>> int("42"), eval("42") # string to int conversions

(42, 42)

>>> str(42), repr(42) # int to string conversions

(1421 , 1421)

>>> ("%d" % 42), '{:d}'.format(42) # via formatting expression, method
(I42I , I42I )

>>> "42" + str(1), int("42") + 1 # concatenation, addition

('421', 43)

In the last command here, the first expression triggers string concatenation (since both
sides are strings), and the second invokes integer addition (because both objects are
numbers). Python doesn’t assume you meant one or the other and convert automati-
cally; as a rule of thumb, Python tries to avoid magic—and the temptation to guess—
whenever possible. String tools will be covered in more detail later in this book (in fact,
they get a full chapter in Part V), but be sure to also see the library manual for additional
string method tools.

Other String Concepts in Python 3.X: Unicode and bytes

Technically speaking, the Python 3.X string story is a bit richer than I've implied here.
What I’'ve shown so far is the str object type—a sequence of characters (technically,
Unicode “code points” represented as Unicode “code units”) which represents both
ASCII and wider Unicode text, and handles encoding and decoding both manually on
request and automatically on file transfers. Strings are coded in quotes (e.g., ‘abc"),
along with various syntax for coding non-ASCII text (e.g., ' \xc4\xe8", ' \uooc4\uooes").
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Really, though, 3.X has two additional string types that support most str string oper-
ations: bytes—a sequence of short integers for representing 8-bit binary data, and
bytearray—a mutable variant of bytes. You generally know you are dealing with
bytes if strings display or are coded with a leading “b” character before the opening
quote (e.g.,b'abc', b'\xc4\xe8"'). As we’ll see in Chapter 4, files in 3.X follow a similar
dichotomy, using str in text mode (which also handles Unicode encodings and line-
end conversions) and bytes in binary mode (which transfers bytes to and from files
unchanged). And in Chapter 5, we’ll see the same distinction for tools like sockets,
which deal in byte strings today.

Unicode text is used in Internationalized applications, and many of Python’s binary-
oriented tools deal in byte strings today. This includes some file tools we’ll meet along
the way, such as the open call, and the os.1listdir and os.walk tools we’ll study in
upcoming chapters. As we’ll see, even simple directory tools sometimes have to be
aware of Unicode in file content and names. Moreover, tools such as object pickling
and binary data parsing are byte-oriented today.

Later in the book, we’ll also find that Unicode also pops up today in the text displayed
in GUIs; the bytes shipped other networks; Internet standard such as email; and even
some persistence topics such as DBM files and shelves. Any interface that deals in text
necessarily deals in Unicode today, because str is Unicode, whether ASCII or wider.
Once we reach the realm of the applications programming presented in this book,
Unicode is no longer an optional topic for most Python 3.X programmers.

In this book, we’ll defer further coverage of Unicode until we can see it in the context
of application topics and practical programs. For more fundamental details on how
3.X’s Unicode text and binary data support impact both string and file usage in some
roles, please see Learning Python, Fourth Edition; since this is officially a core language
topic, it enjoys in-depth coverage and a full 45-page dedicated chapter in that book.

File Operation Basics

Besides processing strings, the more.py script also uses files—it opens the external file
whose name is listed on the command line using the built-in open function, and it reads
that file’s text into memory all at once with the file object read method. Since file objects
returned by open are part of the core Python language itself, I assume that you have at
least a passing familiarity with them at this point in the text. But just in case you’ve
flipped to this chapter early on in your Pythonhood, the following calls load a file’s
contents into a string, load a fixed-size set of bytes into a string, load a file’s contents
into a list of line strings, and load the next line in the file into a string, respectively:

open('file').read() # read entire file into string
open('file').read(N) # read next N bytes into string
open('file').readlines() # read entire file into line strings list
open('file").readline() # read next line, through '\n'
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As we’ll see in a moment, these calls can also be applied to shell commands in Python
to read their output. File objects also have write methods for sending strings to the
associated file. File-related topics are covered in depth in Chapter 4, but making an
output file and reading it back is easy in Python:

>>> file = open('spam.txt', 'w') # create file spam.txt
>>> file.write(('spam’' * 5) + '\n') # write text: returns #characters written
21

>>> file.close()

>>> file = open('spam.txt') # or open('spam.txt').read()
>>> text = file.read() # read into a string
>>> text

' spamspamspamspamspam\n’

Using Programs in Two Ways

Also by way of review, the last few lines in the more.py file in Example 2-1 introduce
one of the first big concepts in shell tool programming. They instrument the file to be
used in either of two ways—as a script or as a library.

Recall that every Python module has a built-in __name__ variable that Python sets to the
__main__ string only when the file is run as a program, not when it’s imported as a
library. Because of that, the more function in this file is executed automatically by the
last line in the file when this script is run as a top-level program, but not when it is
imported elsewhere. This simple trick turns out to be one key to writing reusable script
code: by coding program logic as functions rather than as top-level code, you can also
import and reuse it in other scripts.

The upshot is that we can run more.py by itself or import and call its more function
elsewhere. When running the file as a top-level program, we list on the command line
the name of a file to be read and paged: as I'll describe in more depth in the next chapter,
words typed in the command that is used to start a program show up in the built-in
sys.argy list in Python. For example, here is the script file in action, paging itself (be
sure to type this command line in your PP4E\System directory, or it won’t find the input
file; more on command lines later):

C:\...\PP4E\System> python more.py more.py

nnn

split and interactively page a string or file of text

nnn

def more(text, numlines=15):
lines = text.splitlines() # like split('\n') but no '' at end
while lines:
chunk = lines[:numlines]
lines = lines[numlines:]
for line in chunk: print(line)
More?y
if lines and input('More?') not in ['y', 'Y']: break
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if _name__ == '_main_':
import sys # when run, not imported
more(open(sys.argv[1]).read(), 10) # page contents of file on cmdline

When the more.py file is imported, we pass an explicit string to its more function, and
this is exactly the sort of utility we need for documentation text. Running this utility
on the sys module’s documentation string gives us a bit more information in human-
readable form about what’s available to scripts:

C:\...\PP4E\System> python

>>> from more import more

>>> import sys

>>> more(sys.__doc_)

This module provides access to some objects used or maintained by the
interpreter and to functions that interact strongly with the interpreter.

Dynamic objects:

argv -- command line arguments; argv[0] is the script pathname if known
path -- module search path; path[0] is the script directory, else "'
modules -- dictionary of loaded modules

displayhook -- called to show results in an interactive session

excepthook -- called to handle any uncaught exception other than SystemExit
To customize printing in an interactive session or to install a custom
top-level exception handler, assign other functions to replace these.

stdin -- standard input file object; used by input()
More?

«__»

Pressing “y” or “Y” here makes the function display the next few lines of documenta-
tion, and then prompt again, unless you’ve run past the end of the lines list. Try this
on your own machine to see what the rest of the module’s documentation string looks
like. Also try experimenting by passing a different window size in the second
argument—iore(sys.__doc__, 5) shows just 5 lines at a time.

Python Library Manuals

If that still isn’t enough detail, your next step is to read the Python library manual’s
entry for sys to get the full story. All of Python’s standard manuals are available online,
and they often install alongside Python itself. On Windows, the standard manuals are
installed automatically, but here are a few simple pointers:

* On Windows, click the Start button, pick All Programs, select the Python entry
there, and then choose the Python Manuals item. The manuals should magically
appear on your display; as of Python 2.4, the manuals are provided as a Windows
help file and so support searching and navigation.

* On Linux or Mac OS X, you may be able to click on the manuals’ entries in a file

explorer or start your browser from a shell command line and navigate to the library
manual’s HTML files on your machine.
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* Ifyou can’t find the manuals on your computer, you can always read them online.
Go to Python’s website at http://www.python.org and follow the documentation
links there. This website also has a simple searching utility for the manuals.

However you get started, be sure to pick the Library manual for things such as sys; this
manual documents all of the standard library, built-in types and functions, and more.
Python’s standard manual set also includes a short tutorial, a language reference, ex-
tending references, and more.

Commercially Published References

At the risk of sounding like a marketing droid, I should mention that you can also
purchase the Python manual set, printed and bound; see the book information page at
http://'www.python.org for details and links. Commercially published Python reference
books are also available today, including Python Essential Reference, Python in a Nut-
shell, Python Standard Library, and Python Pocket Reference. Some of these books are
more complete and come with examples, but the last one serves as a convenient memory
jogger once you’ve taken a library tour or two.T

Introducing the sys Module

But enough about documentation sources (and scripting basics)—let’s move on to
system module details. As mentioned earlier, the sys and os modules form the core of
much of Python’s system-related tool set. To see how, we’ll turn to a quick, interactive
tour through some of the tools in these two modules before applying them in bigger
examples. We'll start with sys, the smaller of the two; remember that to see a full list
of all the attributes in sys, you need to pass it to the dir function (or see where we did
so earlier in this chapter).

Platforms and Versions

Like most modules, sys includes both informational names and functions that take
action. For instance, its attributes give us the name of the underlying operating system
on which the platform code is running, the largest possible “natively sized” integer on
this machine (though integers can be arbitrarily long in Python 3.X), and the version
number of the Python interpreter running our code:

C:\...\PP4E\System> python
>>> import sys

t Full disclosure: I also wrote the last of the books listed as a replacement for the reference appendix that
appeared in the first edition of this book; it’s meant to be a supplement to the text you’re reading, and its
latest edition also serves as a translation resource for Python 2.X readers. As explained in the Preface, the
book you’re holding is meant as tutorial, not reference, so you’ll probably want to find some sort of reference
resource eventually (though I’'m nearly narcissistic enough to require that it be mine).

86 | Chapter2: System Tools



>>> sys.platform, sys.maxsize, sys.version
('win32', 2147483647, '3.1.1 (r311:74483, Aug 17 2009, 17:02:12) ...more deleted...")

>>> if sys.platform[:3] == 'win': print('hello windows')

hello windows
If you have code that must act differently on different machines, simply test the
sys.platform string as done here; although most of Python is cross-platform, nonport-
able tools are usually wrapped in if tests like the one here. For instance, we’ll see later
that some program launch and low-level console interaction tools may vary per plat-

form—simply test sys.platform to pick the right tool for the machine on which your
script is running.

The Module Search Path

The sys module also lets us inspect the module search path both interactively and
within a Python program. sys.path is a list of directory name strings representing the
true search path in a running Python interpreter. When a module is imported, Python
scans this list from left to right, searching for the module’s file on each directory named
in the list. Because of that, this is the place to look to verify that your search path is
really set as intended.*

The sys.path list is simply initialized from your PYTHONPATH setting—the content of
any .pth path files located in Python’s directories on your machine plus system
defaults—when the interpreter is first started up. In fact, if you inspect sys.path inter-
actively, you’ll notice quite a few directories that are not on your PYTHONPATH:
sys.path also includes an indicator for the script’s home directory (an empty string—
something I'll explain in more detail after we meet os.getcwd) and a set of standard
library directories that may vary per installation:

>>> sys.path
['", "C:\\PP4thEd\\Examples', ...plus standard library paths deleted... ]

Surprisingly, sys.path can actually be changed by a program, too. A script can use list
operations such as append, extend, insert, pop, and remove, as well as the del statement
to configure the search path at runtime to include all the source directories to which it
needs access. Python always uses the current sys. path setting to import, no matter what
you’ve changed it to:

>>> sys.path.append(r'C:\mydir")

>>> sys.path

['", "C:\\PP4thEd\\Examples', ...more deleted..., 'C:\\mydir']

1 It’s not impossible that Python sees PYTHONPATH differently than you do. A syntax error in your system shell
configuration files may botch the setting of PYTHONPATH, even if it looks fine to you. On Windows, for example,
if a space appears around the = of a DOS set command in your configuration file (e.g., set NAME = VALUE),
you may actually set NAME to an empty string, not to VALUE!
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Changing sys.path directly like this is an alternative to setting your PYTHONPATH shell
variable, but not a very permanent one. Changes to sys.path are retained only until the
Python process ends, and they must be remade every time you start a new Python
program or session. However, some types of programs (e.g., scripts that run on a web
server) may not be able to depend on PYTHONPATH settings; such scripts can instead
configure sys.path on startup to include all the directories from which they will need
to import modules. For a more concrete use case, see Example 1-34 in the prior
chapter—there we had to tweak the search path dynamically this way, because the web
server violated our import path assumptions.

Windows Directory Paths

Notice the use of a raw string literal in the sys.path configuration code: because back-
slashes normally introduce escape code sequences in Python strings, Windows users
should be sure to either double up on backslashes when using them in DOS directory
path strings (e.g., in "C:\\dir", \\ is an escape sequence that really means \), or use
raw string constants to retain backslashes literally (e.g., r"C:\dir").

If you inspect directory paths on Windows (as in the sys.path interaction listing), Py-
thon prints double \\ to mean a single \. Technically, you can get away with a
single \ in a string if it is followed by a character Python does not recognize as the rest
of an escape sequence, but doubles and raw strings are usually easier than memorizing
escape code tables.

Also note that most Python library calls accept either forward (/) or backward (\)
slashes as directory path separators, regardless of the underlying platform. That is, /
usually works on Windows too and aids in making scripts portable to Unix. Tools in
the os and os.path modules, described later in this chapter, further aid in script path
portability.

The Loaded Modules Table

The sys module also contains hooks into the interpreter; sys.modules, for example, is
a dictionary containing one name:module entry for every module imported in your
Python session or program (really, in the calling Python process):

>>> sys.modules
{'reprlib': <module 'reprlib' from 'c:\python31\lib\reprlib.py'>, ...more deleted...

>>> list(sys.modules.keys())

['reprlib', 'heapq', ' future ', 'sre compile', ' collections', 'locale', ' sre',
'functools', 'encodings', 'site', 'operator', 'io', ' main__ ', ...more deleted... ]
>>> sys

<module 'sys' (built-in)>
>>> sys.modules['sys']
<module 'sys' (built-in)>
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We might use such a hook to write programs that display or otherwise process all the
modules loaded by a program (just iterate over the keys of sys.modules).

Also in the interpret hooks category, an object’s reference count is available via
sys.getrefcount, and the names of modules built-in to the Python executable are listed
in sys.builtin_module names. See Python’s library manual for details; these are mostly
Python internals information, but such hooks can sometimes become important to
programmers writing tools for other programmers to use.

Exception Details

Other attributes in the sys module allow us to fetch all the information related to the
most recently raised Python exception. This is handy if we want to process exceptions
in a more generic fashion. For instance, the sys.exc_info function returns a tuple with
the latest exception’s type, value, and traceback object. In the all class-based exception
model that Python 3 uses, the first two of these correspond to the most recently raised
exception’s class, and the instance of it which was raised:
>>> try:
raise IndexError

. except:
print(sys.exc_info())

(<class 'IndexError'>, IndexError(), <traceback object at 0x019B8288>)

We might use such information to format our own error message to display in a GUI
pop-up window or HTML web page (recall that by default, uncaught exceptions ter-
minate programs with a Python error display). The first two items returned by this call
have reasonable string displays when printed directly, and the third is a traceback object
that can be processed with the standard traceback module:

>>> import traceback, sys

>>> def grail(x):
raise TypeError('already got one')

>>> try:
grail('arthur')

. except:

exc_info = sys.exc_info()
print(exc_info[0])
print(exc_info[1])
traceback.print_tb(exc_info[2])

<class 'TypeError'>

already got one
File "<stdin>", line 2, in <module>
File "<stdin>", line 2, in grail

The traceback module can also format messages as strings and route them to specific
file objects; see the Python library manual for more details.
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Other sys Module Exports

The sys module exports additional commonly-used tools that we will meet in the con-
text of larger topics and examples introduced later in this part of the book. For instance:

* Command-line arguments show up as a list of strings called sys.argv.
* Standard streams are available as sys.stdin, sys.stdout, and sys.stderr.

* Program exit can be forced with sys.exit calls.

Since these lead us to bigger topics, though, we will cover them in sections of their own.

Introducing the os Module

As mentioned, os is the larger of the two core system modules. It contains all of the
usual operating-system calls you use in C programs and shell scripts. Its calls deal with
directories, processes, shell variables, and the like. Technically, this module provides
POSIX tools—a portable standard for operating-system calls—along with platform-
independent directory processing tools as the nested module os.path. Operationally,
os serves as a largely portable interface to your computer’s system calls: scripts written
with os and os. path can usually be run unchanged on any platform. On some platforms,
os includes extra tools available just for that platform (e.g., low-level process calls on
Unix); by and large, though, it is as cross-platform as is technically feasible.

Tools in the os Module

Let’s take a quick look at the basic interfaces in os. As a preview, Table 2-1 summarizes
some of the most commonly used tools in the os module, organized by functional area.

Table 2-1. Commonly used os module tools

Tasks Tools
Shell variables os.environ
Running programs 0s.system, 0s.popen, 0s.execv, 0s. spawnv

Spawning processes  os.fork, os.pipe, os.waitpid, os.kill

Descriptorfiles, locks  os.open, os.read, os.write

File processing 0s.remove, 0s.rename, os.mkfifo, os.mkdir, os.rmdir

Administrative tools  os.getcwd, os.chdir, os.chmod, os.getpid, os.listdir, os.access
Portability tools o0s.sep,0s.pathsep, os.curdir, os.path.split, os.path.join

Pathname tools os.path.exists('path'),os.path.isdir('path'), os.path.getsize('path")

If you inspect this module’s attributes interactively, you get a huge list of names that
will vary per Python release, will likely vary per platform, and isn’t incredibly useful
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until you’ve learned what each name means (I've let this line-wrap and removed most
of this list to save space—run the command on your own):

>>> import os
>>> dir(os)
['F_OK', 'MutableMapping', 'O APPEND', 'O BINARY', 'O CREAT', 'O_EXCL', 'O _NOINH
ERIT', 'O RANDOM', 'O RDONLY', 'O RDWR', 'O SEQUENTIAL', 'O SHORT LIVED', 'O _TEM
PORARY', 'O TEXT', 'O _TRUNC', 'O WRONLY', 'P_DETACH', 'P_NOWAIT', 'P_NOWAITO', '
P_OVERLAY', 'P WAIT', 'R_OK', 'SEEK CUR', 'SEEK END', 'SEEK SET', 'TMP_MAX',
...9 lines removed here...
'pardir', 'path', 'pathsep', 'pipe', 'popen’, 'putenv', 'read', 'remove', 'rem
ovedirs', 'rename', 'renames', 'rmdir', 'sep', 'spawnl', 'spawnle', 'spawnv', 's
pawnve', 'startfile', 'stat', 'stat float times', 'stat result', 'statvfs result
', 'strerror', 'sys', 'system', 'times', 'umask', 'unlink', ‘urandom', 'utime’,
'waitpid', 'walk', 'write']
Besides all of these, the nested os.path module exports even more tools, most of which
are related to processing file and directory names portably:
>>> dir(os.path)
[' _all ', ' builtins_ ', ' doc_ ‘', ' file ', ' name_ ', ' package ',
' get altsep', ' get bothseps', ' get colon', ' get dot', ' get empty',
' get sep', ' getfullpathname', 'abspath', 'altsep', 'basename', 'commonprefix',
'curdir', 'defpath', 'devnull', 'dirname', 'exists', 'expanduser', 'expandvars',
'extsep', 'genericpath', 'getatime', 'getctime', 'getmtime', 'getsize', 'isabs',
'isdir', 'isfile', 'islink', 'ismount', 'join', 'lexists', 'normcase', 'normpath’,
'os', 'pardir', 'pathsep', 'realpath', 'relpath', 'sep', 'split', 'splitdrive’,
"splitext', 'splitunc', 'stat', 'supports_unicode filenames', 'sys']

Administrative Tools

Just in case those massive listings aren’t quite enough to go on, let’s experiment inter-
actively with some of the more commonly used os tools. Like sys, the os module comes
with a collection of informational and administrative tools:

>>> os.getpid()

7980

>>> os.getcwd()
'C:\\PP4thEd\\Examples\\PP4E\\System'

>>> os.chdir(r'C:\Users")
>>> os.getcwd()
'C:\\Users'

As shown here, the os.getpid function gives the calling process’s process ID (a unique
system-defined identifier for a running program, useful for process control and unique
name creation), and os.getcwd returns the current working directory. The current
working directory is where files opened by your script are assumed to live, unless their
names include explicit directory paths. That’s why earlier I told you to run the following
command in the directory where more.py lives:

C:\...\PP4E\System> python more.py more.py
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The input filename argument here is given without an explicit directory path (though
you could add one to page files in another directory). If you need to run in a different
working directory, call the os.chdir function to change to a new directory; your code
will run relative to the new directory for the rest of the program (or until the next
os.chdir call). The next chapter will have more to say about the notion of a current
working directory, and its relation to module imports when it explores script execution
context.

Portability Constants

The os module also exports a set of names designed to make cross-platform program-
ming simpler. The set includes platform-specific settings for path and directory sepa-
rator characters, parent and current directory indicators, and the characters used to
terminate lines on the underlying computer.
>>> os.pathsep, os.sep, os.pardir, os.curdir, os.linesep
SO, T, )

os.sep is whatever character is used to separate directory components on the platform
on which Python is running; it is automatically preset to \ on Windows, / for POSIX
machines, and : on some Macs. Similarly, os.pathsep provides the character that sep-
arates directories on directory lists, : for POSIX and ; for DOS and Windows.

By using such attributes when composing and decomposing system-related strings in
our scripts, we make the scripts fully portable. For instance, a call of the form dir
path.split(os.sep) will correctly split platform-specific directory names into compo-
nents, though dirpath may look like dir\dir on Windows, dir/dir on Linux, and
dir:dir on some Macs. As mentioned, on Windows you can usually use forward slashes
rather than backward slashes when giving filenames to be opened, but these portability
constants allow scripts to be platform neutral in directory processing code.

Notice also how os.1linesep comes back as \r\n here—the symbolic escape code which
reflects the carriage-return + line-feed line terminator convention on Windows, which
you don’t normally notice when processing text files in Python. We’ll learn more about
end-of-line translations in Chapter 4.

Common os.path Tools

The nested module os.path provides a large set of directory-related tools of its own.
For example, it includes portable functions for tasks such as checking a file’s type
(isdir, isfile, and others); testing file existence (exists); and fetching the size of a file
by name (getsize):

>>> os.path.isdir(r'C:\Users'), os.path.isfile(r'C:\Users")

(True, False)

>>> os.path.isdir(r'C:\config.sys'), os.path.isfile(r'C:\config.sys")

(False, True)

>>> os.path.isdir('nonesuch'), os.path.isfile('nonesuch')
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(False, False)

>>> os.path.exists(r'c:\Users\Brian')

False

>>> os.path.exists(r'c:\Users\Default')
True

>>> os.path.getsize(r'C:\autoexec.bat")
24

The os.path.isdir and os.path.isfile calls tell us whether a filename is a directory or
a simple file; both return False if the named file does not exist (that is, nonexistence
implies negation). We also get calls for splitting and joining directory path strings,
which automatically use the directory name conventions on the platform on which
Python is running:

>>> os.path.split(r'C:\temp\data.txt")
("C:\\temp', 'data.txt')

>>> os.path.join(r'C:\temp', 'output.txt')
"C:\\temp\\output.txt'

>>> name = r'C:\temp\data.txt' # Windows paths
>>> os.path.dirname(name), os.path.basename(name)
("C:\\temp', 'data.txt')

>>> name = '/home/lutz/temp/data.txt" # Unix-style paths
>>> os.path.dirname(name), os.path.basename(name)
('/home/lutz/temp’, 'data.txt"')

>>> os.path.splitext(r'C:\PP4thEd\Examples\PP4E\PyDemos.pyw')
("C:\\PP4thEd\\Examples\\PP4E\\PyDemos', '.pyw')

os.path.split separates a filename from its directory path, and os.path. join puts them
back together—all in entirely portable fashion using the path conventions of the ma-
chine on which they are called. The dirname and basename calls here return the first and
second items returned by a split simply as a convenience, and splitext strips the file
extension (after the last .). Subtle point: it’s almost equivalent to use string split and
join method calls with the portable os.sep string, but not exactly:

>>> 0s.sep

5K

>>> pathname = r'C:\PP4thEd\Examples\PP4E\PyDemos.pyw'

>>> os.path.split(pathname) # split file from dir
("C:\\PP4thEd\\Examples\\PP4E"', 'PyDemos.pyw")

>>> pathname.split(os.sep) # split on every slash
['C:', "PP4thEd', 'Examples', 'PP4E', 'PyDemos.pyw']

>>> os.sep.join(pathname.split(os.sep))
'C:\\PP4thEd\\Examples\\PP4E\\PyDemos.pyw'

>>> os.path.join(*pathname.split(os.sep))
'C:PP4thEd\\Examples\\PP4E\\PyDemos.pyw'
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The last join call require individual arguments (hence the *) but doesn’t insert a first
slash because of the Windows drive syntax; use the preceding str.join method instead
if the difference matters. The normpath call comes in handy if your paths become a
jumble of Unix and Windows separators:

>>> mixed

"C:\\temp\\public/files/index.html’

>>> os.path.normpath(mixed)

"C:\\temp\\public\\files\\index.html'

>>> print(os.path.normpath(r'C:\temp\\sub\.\file.ext"))
C:\temp\sub\file.ext

This module also has an abspath call that portably returns the full directory pathname
of a file; it accounts for adding the current directory as a path prefix, .. parent syntax,
and more:

>>> os.chdir(r'C:\Users")

>>> os.getcwd()

'C:\\Users'

>>> os.path.abspath('") # empty string means the cwd
'C:\\Users'

>>> os.path.abspath('temp") # expand to full pathname in cwd
"C:\\Users\\temp'

>>> os.path.abspath(r'PP4E\dev") # partial paths relative to cwd
"C:\\Users\\PP4E\\dev'

>>> os.path.abspath('.") # relative path syntax expanded
"C:\\Users'

>>> os.path.abspath('..")

lc:\\l

>>> os.path.abspath(r'..\examples')

"C:\\examples'

>>> os.path.abspath(r'C:\PP4thEd\chapters') # absolute paths unchanged
'C:\\PP4thEd\\chapters'

>>> os.path.abspath(r'C:\temp\spam.txt')

"C:\\temp\\spam.txt'

Because filenames are relative to the current working directory when they aren’t fully
specified paths, the os.path.abspath function helps if you want to show users what
directory is truly being used to store a file. On Windows, for example, when GUI-based
programs are launched by clicking on file explorer icons and desktop shortcuts, the
execution directory of the program is the clicked file’s home directory, but that is not
always obvious to the person doing the clicking; printing a file’s abspath can help.

Running Shell Commands from Scripts

The os module is also the place where we run shell commands from within Python
scripts. This concept is intertwined with others, such as streams, which we won’t cover
fully until the next chapter, but since this is a key concept employed throughout this
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part of the book, let’s take a quick first look at the basics here. Two os functions allow
scripts to run any command line that you can type in a console window:

os.system
Runs a shell command from a Python script
0s.popen
Runs a shell command and connects to its input or output streams

In addition, the relatively new subprocess module provides finer-grained control over
streams of spawned shell commands and can be used as an alternative to, and even for
the implementation of, the two calls above (albeit with some cost in extra code
complexity).

What's a shell command?

To understand the scope of the calls listed above, we first need to define a few terms.
In this text, the term shell means the system that reads and runs command-line strings
on your computer, and shell command means a command-line string that you would
normally enter at your computer’s shell prompt.

For example, on Windows, you can start an MS-DOS console window (a.k.a. “Com-
mand Prompt”) and type DOS commands there—commands such as dir to get a di-
rectory listing, type to view a file, names of programs you wish to start, and so on. DOS
is the system shell, and commands such as dir and type are shell commands. On Linux
and Mac OS X, you can start a new shell session by opening an xterm or terminal
window and typing shell commands there too—1s to list directories, cat to view files,
and so on. A variety of shells are available on Unix (e.g., csh, ksh), but they all read and
run command lines. Here are two shell commands typed and run in an MS-DOS console
box on Windows:

C:\...\PP4E\System> dir /B ...type a shell command line
helloshell.py ...its output shows up here
more.py ...DOS is the shell on Windows
more.pyc

spam.txt

__init__.py

C:\...\PP4E\System> type helloshell.py
# a Python program
print('The Meaning of Life')

Running shell commands

None of this is directly related to Python, of course (despite the fact that Python
command-line scripts are sometimes confusingly called “shell tools”). But because the
os module’s system and popen calls let Python scripts run any sort of command that the
underlying system shell understands, our scripts can make use of every command-line
tool available on the computer, whether it’s coded in Python or not. For example, here
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is some Python code that runs the two DOS shell commands typed at the shell prompt
shown previously:

C:\...\PP4E\System> python

>>> import os

>>> os.system('dir /B')

helloshell.py

more.py

more. pyc

spam.txt

__init__.py

0

>>> os.system('type helloshell.py')

# a Python program

print('The Meaning of Life')

0

>>> os.system('type hellshell.py')
The system cannot find the file specified.
1

The 0s at the end of the first two commands here are just the return values of the system
call itself (its exit status; zero generally means success). The system call can be used to
run any command line that we could type at the shell’s prompt (here, C:\...\PP4E
\System>). The command’s output normally shows up in the Python session’s or pro-
gram’s standard output stream.

Communicating with shell commands

But what if we want to grab a command’s output within a script? The os.system call
simply runs a shell command line, but os.popen also connects to the standard input or
output streams of the command; we get back a file-like object connected to the com-
mand’s output by default (if we pass a w mode flag to popen, we connect to the com-
mand’s input stream instead). By using this object to read the output of a command
spawned with popen, we can intercept the text that would normally appear in the
console window where a command line is typed:

>>> open('helloshell.py").read()
"# a Python program\nprint('The Meaning of Life')\n"

>>> text = os.popen('type helloshell.py').read()
>>> text
"# a Python program\nprint('The Meaning of Life')\n"

>>> listing = os.popen('dir /B').readlines()
>>> listing
['helloshell.py\n', 'more.py\n', 'more.pyc\n', 'spam.txt\n',

_init_ .py\n']

Here, we first fetch a file’s content the usual way (using Python files), then as the output
of a shell type command. Reading the output of a dir command lets us get a listing of
files in a directory that we can then process in a loop. We’ll learn other ways to obtain
such a list in Chapter 4; there we’ll also learn how file iterators make the readlines call
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in the os.popen example above unnecessary in most programs, except to display the
list interactively as we did here (see also “subprocess, os.popen, and Itera-
tors” on page 101 for more on the subject).

So far, we’ve run basic DOS commands; because these calls can run any command line
that we can type at a shell prompt, they can also be used to launch other Python scripts.
Assuming your system search path is set to locate your Python (so that you can use the
shorter “python” in the following instead of the longer “C:\Python31\python”):

>>> os.system('python helloshell.py') # run a Python program
The Meaning of Life

0

>>> output = os.popen('python helloshell.py').read()

>>> output

'The Meaning of Life\n'

In all of these examples, the command-line strings sent to system and popen are hard-
coded, but there’s no reason Python programs could not construct such strings at
runtime using normal string operations (+, %, etc.). Given that commands can be dy-
namically built and run this way, system and popen turn Python scripts into flexible and
portable tools for launching and orchestrating other programs. For example, a Python
test “driver” script can be used to run programs coded in any language (e.g., C++, Java,
Python) and analyze their output. We’ll explore such a script in Chapter 6. We’ll also
revisit os.popen in the next chapter in conjunction with stream redirection; as we’ll find,
this call can also send input to programs.

The subprocess module alternative

Asmentioned, in recent releases of Python the subprocess module can achieve the same
effect as os.systemand os.popen; it generally requires extra code but gives more control
over how streams are connected and used. This becomes especially useful when streams
are tied in more complex ways.

For example, to run a simple shell command like we did with os.system earlier, this
new module’s call function works roughly the same (running commands like “type”
that are built into the shell on Windows requires extra protocol, though normal exe-
cutables like “python” do not):

>>> import subprocess

>>> subprocess.call('python helloshell.py') # roughly like os.system()
The Meaning of Life

0

>>> subprocess.call('cmd /C "type helloshell.py"') # built-in shell cmd

# a Python program

print('The Meaning of Life')

0

>>> subprocess.call('type helloshell.py', shell=True) # alternative for built-ins
# a Python program

print('The Meaning of Life')

0
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Notice the shell=True in the last command here. This is a subtle and platform-
dependent requirement:

* On Windows, we need to pass a shell=True argument to subprocess tools like
call and Popen (shown ahead) in order to run commands built into the shell. Win-
dows commands like “type” require this extra protocol, but normal executables
like “python” do not.

* On Unix-like platforms, when shell is False (its default), the program command
line is run directly by os.execvp, a call we’ll meet in Chapter 5. If this argument is
True, the command-line string is run through a shell instead, and you can specify
the shell to use with additional arguments.

More on some of this later; for now, it’s enough to note that you may need to pass
shell=True to run some of the examples in this section and book in Unix-like environ-
ments, if they rely on shell features like program path lookup. Since I'm running code
on Windows, this argument will often be omitted here.

Besides imitating os.system, we can similarly use this module to emulate the
os.popen call used earlier, to run a shell command and obtain its standard output text
in our script:

>>> pipe = subprocess.Popen('python helloshell.py', stdout=subprocess.PIPE)

>>> pipe.communicate()

(b'The Meaning of Life\r\n', None)

>>> pipe.returncode
0

Here, we connect the stdout stream to a pipe, and communicate to run the command
to completion and receive its standard output and error streams’ text; the command’s
exit status is available in an attribute after it completes. Alternatively, we can use other
interfaces to read the command’s standard output directly and wait for it to exit (which
returns the exit status):

>>> pipe = subprocess.Popen('python helloshell.py', stdout=subprocess.PIPE)

>>> pipe.stdout.read()

b'The Meaning of Life\r\n'

>>> pipe.wait()

0

In fact, there are direct mappings from os.popen calls to subprocess.Popen objects:

>>> from subprocess import Popen, PIPE

>>> Popen('python helloshell.py', stdout=PIPE).communicate()[0]
b'The Meaning of Life\r\n'

>>

>>> import os

>>> os.popen('python helloshell.py').read()

'The Meaning of Life\n'

As you can probably tell, subprocess is extra work in these relatively simple cases. It
starts to look better, though, when we need to control additional streams in flexible
ways. In fact, because it also allows us to process a command’s error and input streams
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in similar ways, in Python 3.X subprocess replaces the original os.popen2, os.popen3,
and os.popen4 calls which were available in Python 2.X; these are now just use cases
for subprocess object interfaces. Because more advanced use cases for this module deal
with standard streams, we’ll postpone additional details about this module until we
study stream redirection in the next chapter.

Shell command limitations

Before we move on, you should keep in mind two limitations of system and popen. First,
although these two functions themselves are fairly portable, their use is really only as
portable as the commands that they run. The preceding examples that run DOS dir
and type shell commands, for instance, work only on Windows, and would have to be
changed in order to run 1s and cat commands on Unix-like platforms.

Second, it is important to remember that running Python files as programs this way is
very different and generally much slower than importing program files and calling
functions they define. When os. systemand os. popen are called, they must start a brand-
new, independent program running on your operating system (they generally run the
command in a new process). When importing a program file as a module, the Python
interpreter simply loads and runs the file’s code in the same process in order to generate
a module object. No other program is spawned along the way.$

There are good reasons to build systems as separate programs, too, and in the next
chapter we’ll explore things such as command-line arguments and streams that allow
programs to pass information back and forth. But in many cases, imported modules
are a faster and more direct way to compose systems.

If you plan to use these calls in earnest, you should also know that the os. system call
normally blocks—that is, pauses—its caller until the spawned command line exits. On
Linux and Unix-like platforms, the spawned command can generally be made to run
independently and in parallel with the caller by adding an & shell background operator
at the end of the command line:

os.system("python program.py arg arg &")

On Windows, spawning with a DOS start command will usually launch the command
in parallel too:

os.system("start program.py arg arg")

§ The Python code exec(open(file).read()) also runs a program file’s code, but within the same process that
called it. It’s similar to an import in that regard, but it works more as if the file’s text had been pasted into
the calling program at the place where the exec call appears (unless explicit global or local namespace
dictionaries are passed). Unlike imports, such an exec unconditionally reads and executes a file’s code (it
may be run more than once per process), no module object is generated by the file’s execution, and unless
optional namespace dictionaries are passed in, assignments in the file’s code may overwrite variables in the
scope where the exec appears; see other resources or the Python library manual for more details.
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In fact, this is so useful that an os.startfile call was added in recent Python releases.

This call opens a file with whatever program is listed in the Windows registry for the

file’s type—as though its icon has been clicked with the mouse cursor:
os.startfile("webpage.html") # open file in your web browser

os.startfile("document.doc") # open file in Microsoft Word
os.startfile("myscript.py") # run file with Python

The os.popen call does not generally block its caller (by definition, the caller must be
able to read or write the file object returned) but callers may still occasionally become
blocked under both Windows and Linux if the pipe object is closed—e.g., when gar-
bage is collected—before the spawned program exits or the pipe is read exhaustively
(e.g., with its read() method). As we will see later in this part of the book, the Unix
os.fork/exec and Windows os.spawnv calls can also be used to run parallel programs
without blocking.

Because the os module’s system and popen calls, as well as the subprocess module, also
fall under the category of program launchers, stream redirectors, and cross-process
communication devices, they will show up again in the following chapters, so we’ll
defer further details for the time being. If you’re looking for more details right away,
be sure to see the stream redirection section in the next chapter and the directory listings
section in Chapter 4.

Other os Module Exports

That’s as much of a tour around os as we have space for here. Since most other os
module tools are even more difficult to appreciate outside the context of larger appli-
cation topics, we’ll postpone a deeper look at them until later chapters. But to let you
sample the flavor of this module, here is a quick preview for reference. Among the os
module’s other weapons are these:

0s.environ
Fetches and sets shell environment variables

os.fork

Spawns a new child process on Unix-like systems
os.pipe

Communicates between programs
os.execlp

Starts new programs
05.Spawnv

Starts new programs with lower-level control
0s.open

Opens a low-level descriptor-based file

os.mkdir
Creates a new directory
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os.mkfifo
Creates a new named pipe

os.stat
Fetches low-level file information

0s.remove
Deletes a file by its pathname

os.walk
Applies a function or loop body to all parts of an entire directory tree

And so on. One caution up front: the os module provides a set of file open, read, and
write calls, but all of these deal with low-level file access and are entirely distinct from
Python’s built-in stdio file objects that we create with the built-in open function. You
should normally use the built-in open function, not the os module, for all but very special
file-processing needs (e.g., opening with exclusive access file locking).

In the next chapter we will apply sys and os tools such as those we’ve introduced here
to implement common system-level tasks, but this book doesn’t have space to provide
an exhaustive list of the contents of modules we will meet along the way. Again, if you
have not already done so, you should become acquainted with the contents of modules
such as os and sys using the resources described earlier. For now, let’s move on to
explore additional system tools in the context of broader system programming
concepts—the context surrounding a running script.

subprocess, os.popen, and Iterators

In Chapter 4, we’ll explore file iterators, but you’ve probably already studied the basics
prior to picking up this book. Because os.popen objects have an iterator that reads one
line at a time, their readlines method call is usually superfluous. For example, the
following steps through lines produced by another program without any explicit reads:

>>> import os
>>> for line in os.popen('dir /B *.py'): print(line, end='")

helloshell.py

more.py

__init__.py
Interestingly, Python 3.1 implements os.popen using the subprocess.Popen object that
we studied in this chapter. You can see this for yourself in file os.py in the Python
standard library on your machine (see C:\Python31\Lib on Windows); the os.popen
result is an object that manages the Popen object and its piped stream:

>>> I = os.popen('dir /B *.py')

>> 1

<os._wrap_close object at 0x013BC750>

Because this pipe wrapper object definesan __iter method, it supports line iteration,
both automatic (e.g., the for loop above) and manual. Curiously, although the pipe
wrapper object supports direct __next__ method calls as though it were its own iterator
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(just like simple files), it does not support the next built-in function, even though the
latter is supposed to simply call the former:
>>> I = os.popen('dir /B *.py')

>>> I.__next_ ()
"helloshell.py\n'

>>> I = os.popen('dir /B *.py')
>>> next(I)
TypeError: _wrap_close object is not an iterator

The reason for this is subtle—direct __next _ calls are intercepted by a __ getattr
defined in the pipe wrapper object, and are properly delegated to the wrapped object;
but next function calls invoke Python’s operator overloading machinery, which in 3.X
bypasses the wrapper’s __getattr__ for special method names like __next__. Since the
pipe wrapper object doesn’t define a __next__ of its own, the call is not caught and
delegated, and the next built-in fails. As explained in full in the book Learning Py-
thon, the wrapper’s__getattr _isn’ttried because 3.X begins such searches at the class,
not the instance.

This behavior may or may not have been anticipated, and you don’t need to care if you
iterate over pipe lines automatically with for loops, comprehensions, and other tools.
To code manual iterations robustly, though, be sure to call the iter built-in first—this
invokesthe _iter defined in the pipe wrapper object itself, to correctly support both
flavors of advancement:

>>> I = os.popen('dir /B *.py')
>>> I = iter(I) # what for loops do
>>> I._next_ () # now both forms work

"helloshell.py\n'
>>> next(I)
"more.py\n'
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CHAPTER 3
Script Execution Context

“I'd Like to Have an Argument, Please”

Python scripts don’t run in a vacuum (despite what you may have heard). Depending
on platforms and startup procedures, Python programs may have all sorts of enclosing
context—information automatically passed in to the program by the operating system
when the program starts up. For instance, scripts have access to the following sorts of
system-level inputs and interfaces:

Current working directory
os.getcwd gives access to the directory from which a script is started, and many file
tools use its value implicitly.

Command-line arguments
sys.argv gives access to words typed on the command line that are used to start
the program and that serve as script inputs.

Shell variables
os.environ provides an interface to names assigned in the enclosing shell (or a
parent program) and passed in to the script.

Standard streams
sys.stdin, stdout, and stderr export the three input/output streams that are at the
heart of command-line shell tools, and can be leveraged by scripts with print op-
tions, the os.popen call and subprocess module introduced in Chapter 2, the
io.StringIO class, and more.

Such tools can serve as inputs to scripts, configuration parameters, and so on. In this
chapter, we will explore all these four context’s tools—both their Python interfaces
and their typical roles.
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Current Working Directory

The notion of the current working directory (CWD) turns out to be a key concept in
some scripts’ execution: it’s always the implicit place where files processed by the script
are assumed to reside unless their names have absolute directory paths. As we saw
earlier, os.getcwd lets a script fetch the CWD name explicitly, and os.chdir allows a
script to move to a new CWD.

Keep in mind, though, that filenames without full pathnames map to the CWD and
have nothing to do with your PYTHONPATH setting. Technically, a script is always
launched from the CWD, not the directory containing the script file. Conversely, im-
ports always first search the directory containing the script, not the CWD (unless the
script happens to also be located in the CWD). Since this distinction is subtle and tends
to trip up beginners, let’s explore it in a bit more detail.

CWD, Files, and Import Paths

When you run a Python script by typing a shell command line such as python
diri\dir2\file.py, the CWD is the directory you were in when you typed this com-
mand, not dir]\dir2. On the other hand, Python automatically adds the identity of the
script’s home directory to the front of the module search path such that file.py can
always import other files in dir1\dir2 no matter where it is run from. To illustrate, let’s
write a simple script to echo both its CWD and its module search path:

C:\...\PP4E\System> type whereami.py
import os, sys

print('my os.getcwd =>", os.getcwd()) # show my cwd execution dir
print('my sys.path =>", sys.path[:6]) # show first 6 import paths
input() # wait for keypress if clicked

Now, running this script in the directory in which it resides sets the CWD as expected
and adds it to the front of the module import search path. We met the sys.path module
search path earlier; its first entry might also be the empty string to designate CWD
when you’re working interactively, and most of the CWD has been truncated to “...”
here for display:

C:\...\PP4E\System> set PYTHONPATH=C:\PP4thEd\Examples

C:\...\PP4E\System> python whereami.py

my os.getcwd => C:\...\PP4E\System
my sys.path => ['C:\\...\\PP4E\\System', 'C:\\PP4thEd\\Examples', ...more... ]

But if we run this script from other places, the CWD moves with us (it’s the directory
where we type commands), and Python adds a directory to the front of the module
search path that allows the script to still see files in its own home directory. For instance,
when running from one level up (..), the System name added to the front of sys.path
will be the first directory that Python searches for imports within whereami.py; it points
imports back to the directory containing the script that was run. Filenames without
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complete paths, though, will be mapped to the CWD (C:\PP4thEd\Examples\PP4E),
not the System subdirectory nested there:

C:\...\PP4E\System> cd ..

C:\...\PP4E> python System\whereami.py

my os.getcwd => C:\...\PP4E

my sys.path => ['C:\\...\\PP4E\\System', 'C:\\PP4thEd\\Examples', ...more... ]

C:\...\PP4E> cd System\temp

C:\...\PP4E\System\temp> python ..\whereami.py

my os.getcwd => C:\...\PP4E\System\temp

my sys.path => ['C:\\...\\PP4E\\System', 'C:\\PP4thEd\\Examples', ...]

The net effect is that filenames without directory paths in a script will be mapped to
the place where the command was typed (os.getcwd), but imports still have access to
the directory of the script being run (via the front of sys.path). Finally, when a file is
launched by clicking its icon, the CWD is just the directory that contains the clicked
file. The following output, for example, appears in a new DOS console box when
whereami.py is double-clicked in Windows Explorer:

my os.getcwd => C:\...\PP4E\System
my sys.path => ['C:\\...\\PP4E\\System', ...more... ]

In this case, both the CWD used for filenames and the first import search directory are
the directory containing the script file. This all usually works out just as you expect,
but there are two pitfalls to avoid:

* Filenames might need to include complete directory paths if scripts cannot be sure
from where they will be run.

* Command-line scripts cannot always rely on the CWD to gain import visibility to
files that are not in their own directories; instead, use PYTHONPATH settings and
package import paths to access modules in other directories.

For example, scripts in this book, regardless of how they are run, can always import
other files in their own home directories without package path imports (import file
here), but must go through the PP4E package root to find files anywhere else in the
examples tree (from PP4AE.dir1.dir2 import filethere), even if they are run from the
directory containing the desired external module. As usual for modules, the PP4E
\dir1\dir2 directory name could also be added to PYTHONPATH to make files there visible
everywhere without package path imports (though adding more directories to PYTHON
PATH increases the likelihood of name clashes). In either case, though, imports are al-
ways resolved to the script’s home directory or other Python search path settings, not
to the CWD.
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CWD and Command Lines

This distinction between the CWD and import search paths explains why many scripts
in this book designed to operate in the current working directory (instead of one whose
name is passed in) are run with command lines such as this one:

C:\temp> python C:\...\PP4E\Tools\cleanpyc.py process cwd

In this example, the Python script file itself lives in the directory C:\...\PP4E\Tools, but
because itis run from C:\temp, it processes the files located in C:\temp (i.e., in the CWD,
not in the script’s home directory). To process files elsewhere with such a script, simply
cd to the directory to be processed to change the CWD:

C:\temp> cd C:\PP4thEd\Examples
C:\PP4thEd\Examples> python C:\...\PP4E\Tools\cleanpyc.py process cwd

Because the CWD is always implied, a cd command tells the script which directory to
process in no less certain terms than passing a directory name to the script explicitly,
like this (portability note: you may need to add quotes around the *. py in this and other
command-line examples to prevent it from being expanded in some Unix shells):

C:\...\PP4E\Tools> python find.py *.py C:\temp process named dir

In this command line, the CWD is the directory containing the script to be run (notice
that the script filename has no directory path prefix); but since this script processes a
directory named explicitly on the command line (C:\temp), the CWD is irrelevant. Fi-
nally, if we want to run such a script located in some other directory in order to process
files located in yet another directory, we can simply give directory paths to both:

C:\temp> python C:\...\PP4E\Tools\find.py *.cxx C:\PP4thEd\Examples\PP4E

Here, the script has import visibility to files in its PP4E\Tools home directory and pro-
cesses files in the directory named on the command line, but the CWD is something
else entirely (C:\temp). This last form is more to type, of course, but watch for a variety
of CWD and explicit script-path command lines like these in this book.

Command-Line Arguments

The sys module is also where Python makes available the words typed on the command
that is used to start a Python script. These words are usually referred to as command-
line arguments and show up in sys.argv, a built-in list of strings. C programmers may
notice its similarity to the C argv array (an array of C strings). It’s not much to look at
interactively, because no command-line arguments are passed to start up Python in this
mode:

>>> import sys

>>> sys.argv

("]
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Toreally see what arguments are about, we need to run a script from the shell command
line. Example 3-1 shows an unreasonably simple one that just prints the argv list for
inspection.

Example 3-1. PP4E\System\testargv.py

import sys
print(sys.argv)

Running this script prints the command-line arguments list; note that the first item is
always the name of the executed Python script file itself, no matter how the script was
started (see “Executable Scripts on Unix” on page 108).

C:\...\PP4E\System> python testargv.py
['testargv.py']

C:\...\PP4E\System> python testargv.py spam eggs cheese
['testargv.py', 'spam', 'eggs', 'cheese']

C:\...\PP4E\System> python testargv.py -i data.txt -o results.txt
['testargv.py', '-i', 'data.txt', '-o', 'results.txt']

The last command here illustrates a common convention. Much like function argu-
ments, command-line options are sometimes passed by position and sometimes by
name using a “-name value” word pair. For instance, the pair -i data.txt means the
-i option’s value is data.txt (e.g., an input filename). Any words can be listed, but
programs usually impose some sort of structure on them.

Command-line arguments play the same role in programs that function arguments do
in functions: they are simply a way to pass information to a program that can vary per
program run. Because they don’t have to be hardcoded, they allow scripts to be more
generally useful. For example, a file-processing script can use a command-line argu-
ment as the name of the file it should process; see Chapter 2’s more.py script (Exam-
ple 2-1) for a prime example. Other scripts might accept processing mode flags, Internet
addresses, and so on.

Parsing Command-Line Arguments

Once you start using command-line arguments regularly, though, you’ll probably find
itinconvenient to keep writing code that fishes through the list looking for words. More
typically, programs translate the arguments list on startup into structures that are more
conveniently processed. Here’s one way to do it: the script in Example 3-2 scans the
argv list looking for -optionname optionvalue word pairs and stuffs them into a dic-
tionary by option name for easy retrieval.

Command-Line Arguments | 107



Example 3-2. PP4E\System\testargv2.py

"collect command-line options in a dictionary"”

def getopts(argv):

opts = {}
while argv:
if argv[o][0] == '-": # find "-name value" pairs
opts[argv[0]] = argv[1] # dict key is "-name" arg
argv = argv[2:]
else:
argv = argv[1:]
return opts
if _name__ == '_main_':
from sys import argv # example client code

myargs = getopts(argv)

if '-i' in myargs:
print(myargs['-i'])

print(myargs)

You might import and use such a function in all your command-line tools. When run
by itself, this file just prints the formatted argument dictionary:

C:\...\PP4E\System> python testargv2.py

{}
C:\...\PP4E\System> python testargv2.py -i data.txt -o results.txt
data.txt

{'-0": 'results.txt', '-i': 'data.txt'}

Naturally, we could get much more sophisticated here in terms of argument patterns,
error checking, and the like. For more complex command lines, we could also use
command-line processing tools in the Python standard library to parse arguments:

* The getopt module, modeled after a Unix/C utility of the same name

* The optparse module, a newer alternative, generally considered to be more
powerful

Both of these are documented in Python’s library manual, which also provides usage
examples which we’ll defer to here in the interest of space. In general, the more con-
figurable your scripts, the more you must invest in command-line processing logic
complexity.

Executable Scripts on Unix

Unix and Linux users: you can also make text files of Python source code directly
executable by adding a special line at the top with the path to the Python interpreter
and giving the file executable permission. For instance, type this code into a text file
called myscript:

#!/usr/bin/python
print('And nice red uniforms')
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The first line is normally taken as a comment by Python (it starts with a #); but when
this file is run, the operating system sends lines in this file to the interpreter listed after
#! in line 1. If this file is made directly executable with a shell command of the form
chmod +x myscript, it can be run directly without typing python in the command, as
though it were a binary executable program:

% myscript a b ¢
And nice red uniforms

When run this way, sys.argv will still have the script’s name as the first word in the
list: ["myscript", "a", "b", "c"], exactly as if the script had been run with the more
explicit and portable command form python myscript a b c. Making scripts directly
executable is actually a Unix trick, not a Python feature, but it’s worth pointing out
that it can be made a bit less machine dependent by listing the Unix env command at
the top instead of a hardcoded path to the Python executable:

#1/usr/bin/env python

print('Wait for it...")

When coded this way, the operating system will employ your environment variable
settings to locate your Python interpreter (your PATH variable, on most platforms). If
you run the same script on many machines, you need only change your environment
settings on each machine (you don’t need to edit Python script code). Of course, you
can always run Python files with a more explicit command line:

% python myscript a b c

This assumes that the python interpreter program is on your system’s search path setting
(otherwise, you need to type its full path), but it works on any Python platform with a
command line. Since this is more portable, I generally use this convention in the book’s
examples, but consult your Unix manpages for more details on any of the topics men-
tioned here. Even so, these special #! lines will show up in many examples in this book
just in case readers want to run them as executables on Unix or Linux; on other plat-
forms, they are simply ignored as Python comments.

Note that on recent flavors of Windows, you can usually also type a script’s filename
directly (without the word python) to make it go, and you don’t have to add a #! line
at the top. Python uses the Windows registry on this platform to declare itself as the
program that opens files with Python extensions (.py and others). This is also why you
can launch files on Windows by clicking on them.

Shell Environment Variables

Shell variables, sometimes known as environment variables, are made available to Py-
thon scripts as os.environ, a Python dictionary-like object with one entry per variable
setting in the shell. Shell variables live outside the Python system; they are often set at
your system prompt or within startup files or control-panel GUIs and typically serve
as system-wide configuration inputs to programs.
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In fact, by now you should be familiar with a prime example: the PYTHONPATH module
search path setting is a shell variable used by Python to import modules. By setting it
once in your operating system, its value is available every time a Python program is run.
Shell variables can also be set by programs to serve as inputs to other programs in an
application; because their values are normally inherited by spawned programs, they
can be used as a simple form of interprocess communication.

Fetching Shell Variables

In Python, the surrounding shell environment becomes a simple preset object, not spe-
cial syntax. Indexing os.environ by the desired shell variable’s name string (e.g.,
os.environ[ 'USER']) is the moral equivalent of adding a dollar sign before a variable
name in most Unix shells (e.g., $USER), using surrounding percent signs on DOS
(%USER%), and calling getenv("USER") in a C program. Let’s start up an interactive session
to experiment (run in Python 3.1 on a Windows 7 laptop):

>>> import os

>>> os.environ.keys()
KeysView(<os._Environ object at 0x013B8C70>)

>>> list(os.environ.keys())

['TMP', 'COMPUTERNAME', 'USERDOMAIN', 'PSMODULEPATH', 'COMMONPROGRAMFILES',

...many more deleted...

"NUMBER_OF PROCESSORS', 'PROCESSOR LEVEL', 'USERPROFILE', '0S', 'PUBLIC', 'QTJAVA']

>>> os.environ[ 'TEMP']
"C:\\Users\\mark\\AppData\\Local\\Temp'

Here, the keys method returns an iterable of assigned variables, and indexing fetches
the value of the shell variable TEMP on Windows. This works the same way on Linux,
but other variables are generally preset when Python starts up. Since we know about
PYTHONPATH, let’s peek at its setting within Python to verify its content (as I wrote this,
mine was set to the root of the book examples tree for this fourth edition, as well as a
temporary development location):

>>> os.environ[ 'PYTHONPATH' ]
"C:\\PP4thEd\\Examples;C:\\Users\\Mark\\temp'

>>> for srcdir in os.environ['PYTHONPATH'].split(os.pathsep):
print(srcdir)

C:\PP4thEd\Examples
C:\Users\Mark\temp

>>> import sys

>>> sys.path[:3]

['", "C:\\PP4thed\\Examples', 'C:\\Users\\Mark\\temp']
PYTHONPATH is a string of directory paths separated by whatever character is used to
separate items in such paths on your platform (e.g., ; on DOS/Windows, : on Unix
and Linux). To split it into its components, we pass to the split string method an
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os.pathsep delimiter—a portable setting that gives the proper separator for the under-
lying machine. As usual, sys.path is the actual search path at runtime, and reflects the
result of merging in the PYTHONPATH setting after the current directory.

Changing Shell Variables

Like normal dictionaries, the os.environ object supports both key indexing and
assignment. As for dictionaries, assignments change the value of the key:

>>> os.environ[ 'TEMP']

"C:\\Users\\mark\\AppData\\Local\\Temp

>>> os.environ[ 'TEMP'] = r'c:\temp'

>>> os.environ[ 'TEMP']

"c:\\temp'

But something extra happens here. In all recent Python releases, values assigned to
os.environ keys in this fashion are automatically exported to other parts of the appli-
cation. That is, key assignments change both the os.environ object in the Python pro-
gram as well as the associated variable in the enclosing shell environment of the running
program’s process. Its new value becomes visible to the Python program, all linked-in
C modules, and any programs spawned by the Python process.

Internally, key assignments to os.environ call os.putenv—a function that changes the
shell variable outside the boundaries of the Python interpreter. To demonstrate how
this works, we need a couple of scripts that set and fetch shell variables; the first is
shown in Example 3-3.

Example 3-3. PP4E\System\Environment\setenv.py

import os

print('setenv...', end=" ")

print(os.environ['USER']) # show current shell variable value
os.environ[ 'USER'] = 'Brian’ # runs os.putenv behind the scenes

os.system('python echoenv.py"')

os.environ['USER'] = 'Arthur’ # changes passed to spawned programs
os.system('python echoenv.py"') # and linked-in C library modules

os.environ["USER'] = input('?")
print(os.popen('python echoenv.py').read())

This setenv.py script simply changes a shell variable, USER, and spawns another script
that echoes this variable’s value, as shown in Example 3-4.

Example 3-4. PP4E\System\Environment\echoenv.py

import os
print('echoenv...', end=" ")
print('Hello,", os.environ['USER'])
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No matter how we run echoenv.py, it displays the value of USER in the enclosing shell;
when run from the command line, this value comes from whatever we’ve set the variable
to in the shell itself:

C:\...\PP4E\System\Environment> set USER=Bob

C:\...\PP4E\System\Environment> python echoenv.py
echoenv... Hello, Bob

When spawned by another script such as setenv.py using the os.system and os.popen
tools we met earlier, though, echoenv.py gets whatever USER settings its parent program
has made:

C:\...\PP4E\System\Environment> python setenv.py

setenv... Bob

echoenv... Hello, Brian

echoenv... Hello, Arthur

2Gumby
echoenv... Hello, Gumby

C:\...\PP4E\System\Environment> echo %USER%
Bob

This works the same way on Linux. In general terms, a spawned program always
inherits environment settings from its parents. Spawned programs are programs started
with Python tools such as os. spawnv, the os.fork/exec combination on Unix-like plat-
forms, and os.popen, os.system, and the subprocess module on a variety of platforms.
All programs thus launched get the environment variable settings that exist in the parent
at launch time."

From a larger perspective, setting shell variables like this before starting a new program
is one way to pass information into the new program. For instance, a Python configu-
ration script might tailor the PYTHONPATH variable to include custom directories just
before launching another Python script; the launched script will have the custom search
path in its sys.path because shell variables are passed down to children (in fact, watch
for such a launcher script to appear at the end of Chapter 6).

Shell Variable Fine Points: Parents, putenv, and getenv

Notice the last command in the preceding example—the USER variable is back to its
original value after the top-level Python program exits. Assignments to os.environ keys
are passed outside the interpreter and down the spawned programs chain, but never
back up to parent program processes (including the system shell). This is also true in
C programs that use the putenv library call, and it isn’t a Python limitation per se.

* This is by default. Some program-launching tools also let scripts pass environment settings that are different
from their own to child programs. For instance, the os. spawnve call is like 0s . spawnv, but it accepts a dictionary
argument representing the shell environment to be passed to the started program. Some os.exec* variants

«»

(ones with an “e” at the end of their names) similarly accept explicit environments; see the os.exec* call
formats in Chapter 5 for more details.
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It’s also likely to be a nonissue if a Python script is at the top of your application. But
keep in mind that shell settings made within a program usually endure only for that
program’s run and for the run of its spawned children. If you need to export a shell
variable setting so that it lives on after Python exits, you may be able to find platform-
specific extensions that do this; search http://www.python.org or the Web at large.

Another subtlety: as implemented today, changes to os.environ automatically call
os.putenv, which runs the putenv call in the C library if it is available on your platform
to export the setting outside Python to any linked-in C code. However, although
os.environ changes call os.putenv, direct calls to os.putenv do not update os.environ
to reflect the change. Because of this, the os.environ mapping interface is generally
preferred to os.putenv.

Also note that environment settings are loaded into os.environ on startup and not on
each fetch; hence, changes made by linked-in C code after startup may not be reflected
in os.environ. Python does have a more focused os.getenv call today, but it is simply
translated into an os.environ fetch on most platforms (or all, in 3.X), not into a call to
getenv in the Clibrary. Most applications won’t need to care, especially if they are pure
Python code. On platforms without a putenv call, os.environ can be passed as a pa-
rameter to program startup tools to set the spawned program’s environment.

Standard Streams

The sys module is also the place where the standard input, output, and error streams
of your Python programs live; these turn out to be another common way for programs
to communicate:

>>> import sys
>>> for f in (sys.stdin, sys.stdout, sys.stderr): print(f)

<_io.TextIOWrapper name='<stdin>' encoding='cp437'>
<_io.TextIOWrapper name='<stdout>' encoding='cp437'>
<_io.TextIOWrapper name='<stderr>' encoding='cp437'>

The standard streams are simply preopened Python file objects that are automatically
connected to your program’s standard streams when Python starts up. By default, all
of them are tied to the console window where Python (or a Python program) was star-
ted. Because the print and input built-in functions are really nothing more than user-
friendly interfaces to the standard output and input streams, they are similar to using
stdout and stdin in sys directly:

>>> print('hello stdout world")
hello stdout world

>>> sys.stdout.write('hello stdout world' + '\n')
hello stdout world
19
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>>> input('hello stdin world>')
hello stdin world>spam
'spam'

>>> print('hello stdin world>'); sys.stdin.readline()[:-1]
hello stdin world>

eggs

‘eggs’

Standard Streams on Windows

Windows users: if you click a.py Python program’s filename in a Windows file explorer
to start it (or launch it with os.system), a DOS console window automatically pops up
to serve as the program’s standard stream. If your program makes windows of its own,
you can avoid this console pop-up window by naming your program’s source-code file
with a .pyw extension, not with a .py extension. The .pyw extension simply means
a .py source file without a DOS pop up on Windows (it uses Windows registry settings
to run a custom version of Python). A .pyw file may also be imported as usual.

Also note that because printed output goes to this DOS pop up when a program is
clicked, scripts that simply print text and exit will generate an odd “flash”—the DOS
console box pops up, output is printed into it, and the pop up goes away immediately
(not the most user-friendly of features!). To keep the DOS pop-up box around so that
you can read printed output, simply add an input() call at the bottom of your script to
pause for an Enter key press before exiting.

Redirecting Streams to Files and Programs

Technically, standard output (and print) text appears in the console window where a
program was started, standard input (and input) text comes from the keyboard, and
standard error text is used to print Python error messages to the console window. At
least that’s the default. It’s also possible to redirect these streams both to files and to
other programs at the system shell, as well as to arbitrary objects within a Python script.
On most systems, such redirections make it easy to reuse and combine general-purpose
command-line utilities.

Redirection is useful for things like canned (precoded) test inputs: we can apply a single
test script to any set of inputs by simply redirecting the standard input stream to a
different file each time the script is run. Similarly, redirecting the standard output
stream lets us save and later analyze a program’s output; for example, testing systems
might compare the saved standard output of a script with a file of expected output to
detect failures.

Although it’s a powerful paradigm, redirection turns out to be straightforward to use.
For instance, consider the simple read-evaluate-print loop program in Example 3-5.
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Example 3-5. PP4E\System\Streams\teststreams.py

"read numbers till eof and show squares”

def interact():

print('Hello stream world") # print sends to sys.stdout
while True:
try:
reply = input('Enter a number>') # input reads sys.stdin
except EOFError:
break # raises an except on eof
else: # input given as a string

num = int(reply)
print("%d squared is %d" % (num, num ** 2))
print('Bye")

if name_ =="' main_':
interact() # when run, not imported

As usual, the interact function here is automatically executed when this file is run, not
when it is imported. By default, running this file from a system command line makes
that standard stream appear where you typed the Python command. The script simply
reads numbers until it reaches end-of-file in the standard input stream (on Windows,
end-of-file is usually the two-key combination Ctrl-Z; on Unix, type Ctrl-D instead?):

C:\...\PP4E\System\Streams> python teststreams.py

Hello stream world

Enter a number>12

12 squared is 144

Enter a number>10

10 squared is 100

Enter a number>"Z
Bye

But on both Windows and Unix-like platforms, we can redirect the standard input
stream to come from a file with the < filename shell syntax. Here is a command session
in a DOS console box on Windows that forces the script to read its input from a text
file, input.txt. It’s the same on Linux, but replace the DOS type command with a Unix
cat command:

C:\...\PP4E\System\Streams> type input.txt
8

6

C:\...\PP4E\System\Streams> python teststreams.py < input.txt
Hello stream world

t Notice that input raises an exception to signal end-of-file, but file read methods simply return an empty string
for this condition. Because input also strips the end-of-line character at the end of lines, an empty string result
means an empty line, so an exception is necessary to specify the end-of-file condition. File read methods
retain the end-of-line character and denote an empty line as "\n" instead of "". This is one way in which
reading sys.stdin directly differs from input. The latter also accepts a prompt string that is automatically
printed before input is accepted.
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Enter a number>8 squared is 64
Enter a number>6 squared is 36
Enter a number>Bye

Here, the input.txt file automates the input we would normally type interactively—the
script reads from this file rather than from the keyboard. Standard output can be sim-
ilarly redirected to go to a file with the > filename shell syntax. In fact, we can combine
input and output redirection in a single command:

C:\...\PP4E\System\Streams> python teststreams.py < input.txt > output.txt

C:\...\PP4E\System\Streams> type output.txt
Hello stream world

Enter a number>8 squared is 64

Enter a number>6 squared is 36

Enter a number>Bye

This time, the Python script’s input and output are both mapped to text files, not to
the interactive console session.

Chaining programs with pipes

On Windows and Unix-like platforms, it’s also possible to send the standard output
of one program to the standard input of another using the | shell character between
two commands. This is usually called a “pipe” operation because the shell creates a
pipeline that connects the output and input of two commands. Let’s send the output
of the Python script to the standard more command-line program’s input to see how
this works:

C:\...\PP4E\System\Streams> python teststreams.py < input.txt | more

Hello stream world
Enter a number>8 squared is 64
Enter a number>6 squared is 36
Enter a number>Bye

Here, teststreams’s standard input comes from a file again, but its output (written by
print calls) is sent to another program, not to a file or window. The receiving program
ismore, a standard command-line paging program available on Windows and Unix-like
platforms. Because Python ties scripts into the standard stream model, though, Python
scripts can be used on both ends. One Python script’s output can always be piped into
another Python script’s input:

C:\...\PP4E\System\Streams> type writer.py

print("Help! Help! I'm being repressed!")

print(42)

C:\...\PP4E\System\Streams> type reader.py
print('Got this: "%s"' % input())

import sys

data = sys.stdin.readline()[:-1]

print('The meaning of life is', data, int(data) * 2)
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C:\...\PP4E\System\Streams> python writer.py
Help! Help! I'm being repressed!
42

C:\...\PP4E\System\Streams> python writer.py | python reader.py
Got this: "Help! Help! I'm being repressed!"
The meaning of life is 42 84

This time, two Python programs are connected. Script reader gets input from script
writer; both scripts simply read and write, oblivious to stream mechanics. In practice,
such chaining of programs is a simple form of cross-program communications. It makes
it easy to reuse utilities written to communicate via stdin and stdout in ways we never
anticipated. For instance, a Python program that sorts stdin text could be applied to
any data source we like, including the output of other scripts. Consider the Python
command-line utility scripts in Examples 3-6 and 3-7 which sort and sum lines in the
standard input stream.

Example 3-6. PP4E\System\Streams\sorter.py

import sys # or sorted(sys.stdin)
lines = sys.stdin.readlines() # sort stdin input lines,
lines.sort() # send result to stdout
for line in lines: print(line, end="") # for further processing

Example 3-7. PP4E\System\Streams\adder.py

import sys
sum = 0
while True:
try:
line = input() # or call sys.stdin.readlines()
except EOFError: # or for line in sys.stdin:
break # input strips \n at end
else:
sum += int(line) # was sting.atoi() in 2nd ed
print(sum)

We can apply such general-purpose tools in a variety of ways at the shell command line
to sort and sum arbitrary files and program outputs (Windows note: on my prior XP
machine and Python 2.X, T had to type “python file.py” here, not just “file.py,” or else
the input redirection failed; with Python 3.X on Windows 7 today, either form works):

C:\...\PP4E\System\Streams> type data.txt
123
000
999
042

C:\...\PP4E\System\Streams> python sorter.py < data.txt sort a file
000
042
123
999
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C:\...\PP4E\System\Streams> python adder.py < data.txt sum file
1164

C:\...\PP4E\System\Streams> type data.txt | python adder.py sum type output
1164

C:\...\PP4E\System\Streams> type writer2.py
for data in (123, 0, 999, 42):
print('%03d' % data)

C:\...\PP4E\System\Streams> python writer2.py | python sorter.py sort py output
000
042
123
999

C:\...\PP4E\System\Streams> writer2.py | sorter.py shorter form
...same output as prior command on Windows...

C:\...\PP4E\System\Streams> python writer2.py | python sorter.py | python adder.py
1164

The last command here connects three Python scripts by standard streams—the output
of each prior script is fed to the input of the next via pipeline shell syntax.

Coding alternatives for adders and sorters

A few coding pointers here: if you look closely, you’ll notice that sorter.py reads all of
stdin at once with the readlines method, but adder.py reads one line at a time. If the
input source is another program, some platforms run programs connected by pipes in
parallel. On such systems, reading line by line works better if the data streams being
passed are large, because readers don’t have to wait until writers are completely finished
to get busy processing data. Because input just reads stdin, the line-by-line scheme
used by adder.py can always be coded with manual sys.stdin reads too:
C:\...\PP4E\System\Streams> type adder2.py
import sys
sum = 0
while True:
line = sys.stdin.readline()
if not line: break
sum += int(1line)
print(sum)

This version utilizes the fact that int allows the digits to be surrounded by whitespace

(readline returns a line including its \n, but we don’t have to use [:-1] or rstrip() to

remove it for int). In fact, we can use Python’s more recent file iterators to achieve the

same effect—the for loop, for example, automatically grabs one line each time through

when we iterate over a file object directly (more on file iterators in the next chapter):
C:\...\PP4E\System\Streams> type adder3.py

import sys
sum = 0

118 | Chapter3: Script Execution Context



for line in sys.stdin: sum += int(line)

print(sum)
Changing sorter to read line by line this way may not be a big performance boost,
though, because the list sort method requires that the list already be complete. As we’ll
see in Chapter 18, manually coded sort algorithms are generally prone to be much
slower than the Python list sorting method.

Interestingly, these two scripts can also be coded in a much more compact fashion in
Python 2.4 and later by using the new sorted built-in function, generator expressions,
and file iterators. The following work the same way as the originals, with noticeably
less source-file real estate:

C:\...\PP4E\System\Streams> type sorterSmall.py

import sys

for line in sorted(sys.stdin): print(line, end="'")

C:\...\PP4E\System\Streams> type adderSmall.py

import sys

print(sum(int(line) for line in sys.stdin))
In its argument to sum, the latter of these employs a generator expression, which is much
like a list comprehension, but results are returned one at a time, not in a physical list.
The net effect is space optimization. For more details, see a core language resource,
such as the book Learning Python.

Redirected Streams and User Interaction
Earlier in this section, we piped teststreams.py output into the standard more command-
line program with a command like this:
C:\...\PP4E\System\Streams> python teststreams.py < input.txt | more
But since we already wrote our own “more” paging utility in Python in the preceding

chapter, why not set it up to accept input from stdin too? For example, if we change
the last three lines of the more.py file listed as Example 2-1 in the prior chapter...

if __name__ == "'_ main_': # when run, not when imported
import sys
if len(sys.argv) == 1: # page stdin if no cmd args
more(sys.stdin.read())
else:

more(open(sys.argv[1]).read())

..it almost seems as if we should be able to redirect the standard output of
teststreams.py into the standard input of more.py:

C:\...\PP4E\System\Streams> python teststreams.py < input.txt | python ..\more.py
Hello stream world

Enter a number>8 squared is 64

Enter a number>6 squared is 36

Enter a number>Bye
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This technique generally works for Python scripts. Here, teststreams.py takes input
from a file again. And, as in the last section, one Python program’s output is piped to
another’s input—the more.py script in the parent (..) directory.

But there’s a subtle problem lurking in the preceding more.py command. Really, chain-
ing worked there only by sheer luck: if the first script’s output is long enough that
more has to ask the user if it should continue, the script will utterly fail (specifically,
when input for user interaction triggers EOFError).

The problem is that the augmented more.py uses stdin for two disjointed purposes. It
reads a reply from an interactive user on stdin by calling input, but now it also accepts
the main input text on stdin. When the stdin stream is really redirected to an input
file or pipe, we can’t use it to input a reply from an interactive user; it contains only the
text of the input source. Moreover, because stdin is redirected before the program even
starts up, there is no way to know what it meant prior to being redirected in the com-
mand line.

If we intend to accept input on stdin and use the console for user interaction, we have
to do a bit more: we would also need to use special interfaces to read user replies from
a keyboard directly, instead of standard input. On Windows, Python’s standard library
msvcrt module provides such tools; on many Unix-like platforms, reading from device
file /dev/tty will usually suffice.

Since this is an arguably obscure use case, we’ll delegate a complete solution to a sug-
gested exercise. Example 3-8 shows a Windows-only modified version of the more
script that pages the standard input stream if called with no arguments, but also makes
use of lower-level and platform-specific tools to converse with a user at a keyboard if

needed.

Example 3-8. PP4E\System\Streams\moreplus.py

nnn

split and interactively page a string, file, or stream of
text to stdout; when run as a script, page stdin or file

whose name is passed on cmdline; if input is stdin, can't
use it for user reply--use platform-specific tools or GUI;

import sys

def getreply():
read a reply key from an interactive user
even if stdin redirected to a file or pipe

nun

if sys.stdin.isatty(): # if stdin is console
return input('?") # read reply line from stdin
else:
if sys.platform[:3] == 'win': # if stdin was redirected
import msvcrt # can't use to ask a user

msvcrt.putch(b'?")
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key = msvcrt.getche() # use windows console tools
msvcrt.putch(b'\n") # getch() does not echo key
return key

else:
assert False, 'platform not supported’
#linux?: open('/dev/tty').readline()[:-1]

def more(text, numlines=10):

nun

page multiline string to stdout
lines = text.splitlines()
while lines:
chunk = lines[:numlines]
lines = lines[numlines:]
for line in chunk: print(line)
if lines and getreply() not in [b'y', b'Y']: break

if name_ =="' main_': # when run, not when imported
if len(sys.argv) == 1: # if no command-line arguments
more(sys.stdin.read()) # page stdin, no inputs
else:
more(open(sys.argv[1]).read()) # else page filename argument

Most of the new code in this version shows up in its getreply function. The file’s
isatty method tells us whether stdin is connected to the console; if it is, we simply
read replies on stdin as before. Of course, we have to add such extra logic only to scripts
that intend to interact with console users and take input on stdin. In a GUI application,
for example, we could instead pop up dialogs, bind keyboard-press events to run call-
backs, and so on (we’ll meet GUIs in Chapter 7).

Armed with the reusable getreply function, though, we can safely run our moreplus
utility in a variety of ways. As before, we can import and call this module’s function
directly, passing in whatever string we wish to page:

>>> from moreplus import more

>>> more(open('adderSmall.py').read())
import sys

print(sum(int(line) for line in sys.stdin))

Also as before, when run with a command-line argument, this script interactively pages
through the named file’s text:

C:\...\PP4E\System\Streams> python moreplus.py adderSmall.py
import sys
print(sum(int(line) for line in sys.stdin))

C:\...\PP4E\System\Streams> python moreplus.py moreplus.py
split and interactively page a string, file, or stream of
text to stdout; when run as a script, page stdin or file
whose name is passed on cmdline; if input is stdin, can't
use it for user reply--use platform-specific tools or GUI;

nnn
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import sys

def getreply():
’n

But now the script also correctly pages text redirected into stdin from either a file or a
command pipe, even if that text is too long to fit in a single display chunk. On most
shells, we send such input via redirection or pipe operators like these:

C:\...\PP4E\System\Streams> python moreplus.py < moreplus.py

split and interactively page a string, file, or stream of
text to stdout; when run as a script, page stdin or file

whose name is passed on cmdline; if input is stdin, can't
use it for user reply--use platform-specific tools or GUI;

import sys

def getreply():
’n

C:\...\PP4E\System\Streams> type moreplus.py | python moreplus.py

nnn

split and interactively page a string, file, or stream of
text to stdout; when run as a script, page stdin or file

whose name is passed on cmdline; if input is stdin, can't
use it for user reply--use platform-specific tools or GUI;

nnn

import sys

def getreply():
’n

Finally, piping one Python script’s output into this script’s input now works as expec-
ted, without botching user interaction (and not just because we got lucky):

...... \System\Streams> python teststreams.py < input.txt | python moreplus.py

Hello stream world

Enter a number>8 squared is 64

Enter a number>6 squared is 36
Enter a number>Bye

Here, the standard output of one Python script is fed to the standard input of another
Python script located in the same directory: moreplus.py reads the output of
teststreams.py.

All of the redirections in such command lines work only because scripts don’t care what
standard input and output really are—interactive users, files, or pipes between pro-
grams. For example, when run as a script, moreplus.py simply reads stream
sys.stdin; the command-line shell (e.g., DOS on Windows, csh on Linux) attaches
such streams to the source implied by the command line before the script is started.
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Scripts use the preopened stdin and stdout file objects to access those sources, regard-
less of their true nature.

And for readers keeping count, we have just run this single more pager script in four
different ways: by importing and calling its function, by passing a filename command-
line argument, by redirecting stdin to a file, and by piping a command’s output to
stdin. By supporting importable functions, command-line arguments, and standard
streams, Python system tools code can be reused in a wide variety of modes.

Redirecting Streams to Python Objects

All of the previous standard stream redirections work for programs written in any lan-
guage that hook into the standard streams and rely more on the shell’s command-line
processor than on Python itself. Command-line redirection syntax like < filename and
| program is evaluated by the shell, not by Python. A more Pythonesque form of redi-
rection can be done within scripts themselves by resetting sys. stdin and sys.stdout to
file-like objects.

The main trick behind this mode is that anything that looks like a file in terms of
methods will work as a standard stream in Python. The object’s interface (sometimes
called its protocol), and not the object’s specific datatype, is all that matters. That is:

* Any object that provides file-like read methods can be assigned to sys.stdin to
make input come from that object’s read methods.

* Any object that defines file-like write methods can be assigned to sys.stdout; all
standard output will be sent to that object’s methods.

Because print and input simply call thewrite and readline methods of whatever objects
sys.stdout and sys.stdin happen to reference, we can use this technique to both pro-
vide and intercept standard stream text with objects implemented as classes.

If you’ve already studied Python, you probably know that such plug-and-play com-
patibility is usually called polymorphism—it doesn’t matter what an object is, and it
doesn’t matter what its interface does, as long as it provides the expected interface.
This liberal approach to datatypes accounts for much of the conciseness and flexibility
of Python code. Here, it provides a way for scripts to reset their own streams. Exam-
ple 3-9 shows a utility module that demonstrates this concept.

Example 3-9. PP4E\System\Streams\redirect.py

file-like objects that save standard output text in a string and provide
standard input text from a string; redirect runs a passed-in function
with its output and input streams reset to these file-like class objects;

import sys # get built-in modules

class Output: # simulated output file

Standard Streams | 123



def _init_ (self):

self.text = "' # empty string when created
def write(self, string): # add a string of bytes
self.text += string
def writelines(self, lines): # add each line in a list

for line in lines: self.write(line)

class Input: # simulated input file
def __init_ (self, input='"): # default argument
self.text = input # save string when created
def read(self, size=None): # optional argument
if size == None: # read N bytes, or all
res, self.text = self.text, ''

else:
res, self.text = self.text[:size], self.text[size:]
return res
def readline(self):
eoln = self.text.find('\n") # find offset of next eoln
if eoln == -1: # slice off through eoln
res, self.text = self.text, ''
else:
res, self.text = self.text[:eoln+1], self.text[eoln+1:]
return res
def redirect(function, pargs, kargs, input): # redirect stdin/out
savestreams = sys.stdin, sys.stdout # run a function object
sys.stdin = Input(input) # return stdout text
sys.stdout = Output()
try:
result = function(*pargs, **kargs) # run function with args
output = sys.stdout.text
finally:
sys.stdin, sys.stdout = savestreams # restore if exc or not
return (result, output) # return result if no exc

This module defines two classes that masquerade as real files:

Output
Provides the write method interface (a.k.a. protocol) expected of output files but
saves all output in an in-memory string as it is written.

Input
Provides the interface expected of input files, but provides input on demand from
an in-memory string passed in at object construction time.

The redirect function at the bottom of this file combines these two objects to run a
single function with input and output redirected entirely to Python class objects. The
passed-in function to run need not know or care that its print and input function calls
and stdin and stdout method calls are talking to a class rather than to a real file, pipe,
or user.

To demonstrate, import and run the interact function at the heart of the test
streams script of Example 3-5 that we’ve been running from the shell (to use the
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redirection utility function, we need to deal in terms of functions, not files). When run
directly, the function reads from the keyboard and writes to the screen, just as if it were
run as a program without redirection:

C:\...\PP4E\System\Streams> python

>>> from teststreams import interact

>>> interact()

Hello stream world

Enter a number>2

2 squared is 4

Enter a number>3

3 squared is 9

Enter a number~Z

Bye

>>>
Now, let’s run this function under the control of the redirection function in
redirect.py and pass in some canned input text. In this mode, the interact function
takes its input from the string we pass in ('4\n5\n6\n'—three lines with explicit end-
of-line characters), and the result of running the function is a tuple with its return value
plus a string containing all the text written to the standard output stream:

>>> from redirect import redirect

>>> (result, output) = redirect(interact, (), {}, '4\n5\n6\n")

>>> print(result)

None

>>> output

'Hello stream world\nEnter a number>4 squared is 16\nEnter a number>5 squared
is 25\nEnter a number>6 squared is 36\nEnter a number>Bye\n'

The output is a single, long string containing the concatenation of all text written to
standard output. To make this look better, we can pass it to print or split it up with
the string object’s splitlines method:

>>> for line in output.splitlines(): print(line)

Hello stream world
Enter a number>4 squared is 16
Enter a number>5 squared is 25
Enter a number>6 squared is 36
Enter a number>Bye

Better still, we can reuse the more.py module we wrote in the preceding chapter
(Example 2-1); it’s less to type and remember, and it’s already known to work well (the
following, like all cross-directory imports in this book’s examples, assumes that the
directory containing the PP4E root is on your module search path—change your PYTHON
PATH setting as needed):

>>> from PP4E.System.more import more

>>> more(output)

Hello stream world

Enter a number>4 squared is 16
Enter a number>5 squared is 25
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Enter a number>6 squared is 36
Enter a number>Bye

This is an artificial example, of course, but the techniques illustrated are widely appli-
cable. For instance, it’s straightforward to add a GUI interface to a program written to
interact with a command-line user. Simply intercept standard output with an object
such as the Output class instance shown earlier and throw the text string up in a window.
Similarly, standard input can be reset to an object that fetches text from a graphical
interface (e.g., a popped-up dialog box). Because classes are plug-and-play compatible
with real files, we can use them in any tool that expects a file. Watch for a GUI stream-
redirection module named guiStreams in Chapter 10 that provides a concrete imple-
mentation of some of these ideas.

The io.Stringl0 and io.ByteslO Utility Classes

The prior section’s technique of redirecting streams to objects proved so handy that
now a standard library module automates the task for many use cases (though some
use cases, such as GUIs, may still require more custom code). The standard library tool
provides an object that maps a file object interface to and from in-memory strings. For
example:

>>> from io import StringIO

>>> buff = StringIO() # save written text to a string
>>> buff.write('spam\n")

5

>>> buff.write('eggs\n")

5

>>> buff.getvalue()

"spam\neggs\n'

>>> buff = StringIO('ham\nspam\n') # provide input from a string
>>> buff.readline()

"ham\n'

>>> buff.readline()

"spam\n'

>>> buff.readline()

As in the prior section, instances of StringI0 objects can be assigned to sys.stdin and
sys.stdout to redirect streams for input and print calls and can be passed to any code
that was written to expect a real file object. Again, in Python, the object interface, not
the concrete datatype, is the name of the game:

>>> from io import StringIO

>>> import sys
>>> buff = StringIO()

>>> temp = sys.stdout
>>> sys.stdout = buff
>>> print(42, 'spam', 3.141) # or print(..., file=buff)
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>>> sys.stdout = temp # restore original stream
>>> buff.getvalue()
'42 spam 3.141\n'

Note that there is also an io.BytesIO class with similar behavior, but which maps file
operations to an in-memory bytes buffer, instead of a str string:

>>> from io import BytesIO

>>> stream = BytesIO()

>>> stream.write(b'spam"')

>>> stream.getvalue()
b'spam’

>>> stream = BytesIO(b'dpam')

>>> stream.read()

b'dpam’
Due to the sharp distinction that Python 3X draws between text and binary data, this
alternative may be better suited for scripts that deal with binary data. We’ll learn more
about the text-versus-binary issue in the next chapter when we explore files.

Capturing the stderr Stream

We’ve been focusing on stdin and stdout redirection, but stderr can be similarly reset
to files, pipes, and objects. Although some shells support this, it’s also straightforward
within a Python script. For instance, assigning sys.stderr to another instance of a class
such as Output or a StringI0 object in the preceding section’s example allows your script
to intercept text written to standard error, too.

Python itself uses standard error for error message text (and the IDLE GUI interface
intercepts it and colors it red by default). However, no higher-level tools for standard
error do what print and input do for the output and input streams. If you wish to print
to the error stream, you’ll want to call sys.stderr.write() explicitly or read the next
section for a print call trick that makes this easier.

Redirecting standard errors from a shell command line is a bit more complex and less
portable. On most Unix-like systems, we can usually capture stderr output by using
shell-redirection syntax of the form command > output 2>81. This may not work on some
platforms, though, and can even vary per Unix shell; see your shell’s manpages for more
details.

Redirection Syntax in Print Calls

Because resetting the stream attributes to new objects was so popular, the Python
print built-in is also extended to include an explicit file to which output is to be sent.
A statement of this form:

print(stuff, file=afile) # afile is an object, not a string name
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prints stuff to afile instead of to sys.stdout. The net effect is similar to simply as-
signing sys.stdout to an object, but there is no need to save and restore in order to
return to the original output stream (as shown in the section on redirecting streams to
objects). For example:

import sys
print('spam' * 2, file=sys.stderr)

will send text the standard error stream object rather than sys. stdout for the duration
of this single print call only. The next normal print statement (without file) prints to
standard output as usual. Similarly, we can use either our custom class or the standard
library’s class as the output file with this hook:

>>> from io import StringIO

>>> buff = StringIO()

>>> print(42, file=buff)

>>> print('spam', file=buff)

>>> print(buff.getvalue())

42

spam

>>> from redirect import Output
>>> buff = Output()

>>> print(43, file=buff)

>>> print('eggs', file=buff)
>>> print(buff.text)

43

eggs

Other Redirection Options: os.popen and subprocess Revisited

Near the end of the preceding chapter, we took a first look at the built-in os.popen
function and its subprocess.Popen relative, which provide a way to redirect another
command’s streams from within a Python program. As we saw, these tools can be used
to run a shell command line (a string we would normally type at a DOS or csh prompt)
but also provide a Python file-like object connected to the command’s output stream—
reading the file object allows a script to read another program’s output. I suggested that
these tools may be used to tap into input streams as well.

Because of that, the os.popen and subprocess tools are another way to redirect streams
of spawned programs and are close cousins to some of the techniques we just met.
Their effect is much like the shell | command-line pipe syntax for redirecting streams
to programs (in fact, their names mean “pipe open”), but they are run within a script
and provide a file-like interface to piped streams. They are similar in spirit to the
redirect function, but are based on running programs (not calling functions), and the
command’s streams are processed in the spawning script as files (not tied to class ob-
jects). These tools redirect the streams of a program that a script starts, instead of
redirecting the streams of the script itself.
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Redirecting input or output with os.popen

In fact, by passing in the desired mode flag, we redirect either a spawned program’s
output or input streams to a file in the calling scripts, and we can obtain the spawned
program’s exit status code from the close method (None means “no error” here). To
illustrate, consider the following two scripts:

C:\...\PP4E\System\Streams> type hello-out.py
print('Hello shell world")

C:\...\PP4E\System\Streams> type hello-in.py
inp = input()
open('hello-in.txt', 'w').write('Hello ' + inp + "\n")

These scripts can be run from a system shell window as usual:

C:\...\PP4E\System\Streams> python hello-out.py
Hello shell world

C:\...\PP4E\System\Streams> python hello-in.py
Brian

C:\...\PP4E\System\Streams> type hello-in.txt
Hello Brian

As we saw in the prior chapter, Python scripts can read output from other programs
and scripts like these, too, using code like the following;:

C:\...\PP4E\System\Streams> python

>>> import os

>>> pipe = os.popen('python hello-out.py') # 'r' is default--read stdout
>>> pipe.read()

'Hello shell world\n'

>>> print(pipe.close()) # exit status: None is good
None

But Python scripts can also provide input to spawned programs’ standard input
streams—passing a “w” mode argument, instead of the default “r”, connects the re-
turned object to the spawned program’s input stream. What we write on the spawning

end shows up as input in the program started:

>>> pipe = os.popen('python hello-in.py', 'w'") # 'w'--write to program stdin
>>> pipe.write('Gumby\n')

6

>>> pipe.close() # \n at end is optional

>>> open('hello-in.txt").read() # output sent to a file

"Hello Gumby\n'

The popen call is also smart enough to run the command string as an independent
process on platforms that support such a notion. It accepts an optional third argument
that can be used to control buffering of written text, which we’ll finesse here.
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Redirecting input and output with subprocess

For even more control over the streams of spawned programs, we can employ the
subprocess module we introduced in the preceding chapter. As we learned earlier, this
module can emulate os.popen functionality, but it can also achieve feats such as
bidirectional stream communication (accessing both a program’s input and output)
and tying the output of one program to the input of another.

For instance, this module provides multiple ways to spawn a program and get both its
standard output text and exit status. Here are three common ways to leverage this
module to start a program and redirect its output stream (recall from Chapter 2 that
you may need to pass a shell=True argument to Popen and call to make this section’s
examples work on Unix-like platforms as they are coded here):

C:\...\PP4E\System\Streams> python
>>> from subprocess import Popen, PIPE, call

>»>> X = call('python hello-out.py") # convenience
Hello shell world

>> X

0

>>> pipe = Popen('python hello-out.py', stdout=PIPE)

>>> pipe.communicate()[0] # (stdout, stderr)
b'Hello shell world\r\n'

>>> pipe.returncode # exit status

0

>>> pipe = Popen('python hello-out.py', stdout=PIPE)

>>> pipe.stdout.read()

b'Hello shell world\r\n'

>>> pipe.wait() # exit status
0

The call in the first of these three techniques is just a convenience function (there are
more of these which you can look up in the Python library manual), and the
communicate in the second is roughly a convenience for the third (it sends data to stdin,
reads data from stdout until end-of-file, and waits for the process to end):

Redirecting and connecting to the spawned program’s input stream is just as simple,
though a bit more complex than the os.popen approach with 'w' file mode shown in
the preceding section (as mentioned in the last chapter, os.popen is implemented with
subprocess, and is thus itself just something of a convenience function today):

>>> pipe = Popen('python hello-in.py', stdin=PIPE)

>>> pipe.stdin.write(b'Pokey\n")

6

>>> pipe.stdin.close()

>>> pipe.wait()

0

>>> open('hello-in.txt").read() # output sent to a file
'Hello Pokey\n'
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In fact, we can use obtain both the input and output streams of a spawned program with
this module. Let’s reuse the simple writer and reader scripts we wrote earlier to
demonstrate:

C:\...\PP4E\System\Streams> type writer.py
print("Help! Help! I'm being repressed!")
print(42)

C:\...\PP4E\System\Streams> type reader.py
print('Got this: "%s"' % input())

import sys

data = sys.stdin.readline()[:-1]

print('The meaning of life is', data, int(data) * 2)

Code like the following can both read from and write to the reader script—the pipe
object has two file-like objects available as attached attributes, one connecting to the
input stream, and one to the output (Python 2.X users might recognize these as equiv-
alent to the tuple returned by the now-defunct os.popen2):

>>> pipe = Popen('python reader.py', stdin=PIPE, stdout=PIPE)
>>> pipe.stdin.write(b'Lumberjack\n")

11

>>> pipe.stdin.write(b'12\n")

3

>>> pipe.stdin.close()

>>> output = pipe.stdout.read()

>>> pipe.wait()

0

>>> output

b'Got this: "Lumberjack"\r\nThe meaning of life is 12 24\r\n'

v

As we’ll learn in Chapter 5, we have to be cautious when talking back and forth to a
program like this; buffered output streams can lead to deadlock if writes and reads are
interleaved, and we may eventually need to consider tools like the Pexpect utility as a
workaround (more on this later).

Finally, even more exotic stream control is possible—the following connects two pro-
grams, by piping the output of one Python script into another, first with shell syntax,
and then with the subprocess module:

C:\...\PP4E\System\Streams> python writer.py | python reader.py
Got this: "Help! Help! I'm being repressed!"
The meaning of life is 42 84

C:\...\PP4E\System\Streams> python

>>> from subprocess import Popen, PIPE

>>> p1 = Popen('python writer.py', stdout=PIPE)

>>> p2 = Popen('python reader.py', stdin=pi.stdout, stdout=PIPE)

>>> output = p2.communicate()[0]

>>> output

b'Got this: "Help! Help! I\'m being repressed!"\r\nThe meaning of life is 42 84\r\n'
>>> p2.returncode

0
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We can get close to this with os.popen, but that the fact that its pipes are read or write
(and not both) prevents us from catching the second script’s output in our code:

>>> import os

>>> p1 = os.popen('python writer.py', 'r
>>> p2 = os.popen('python reader.py', 'w
>>> p2.write( pil.read() )

36

>>> X = p2.close()

Got this: "Help! Help! I'm being repressed!"
The meaning of life is 42 84

>>> print(X)

None

)
")

From the broader perspective, the os.popen call and subprocess module are Python’s
portable equivalents of Unix-like shell syntax for redirecting the streams of spawned
programs. The Python versions also work on Windows, though, and are the most
platform-neutral way to launch another program from a Python script. The command-
line strings you pass to them may vary per platform (e.g., a directory listing requires an
1s on Unix but a dir on Windows), but the call itself works on all major Python
platforms.

On Unix-like platforms, the combination of the calls os.fork, os.pipe, os.dup, and
some os.exec variants can also be used to start a new independent program with
streams connected to the parent program’s streams. As such, it’s yet another way to
redirect streams and a low-level equivalent to tools such asos. popen (os . fork is available
in Cygwin’s Python on Windows).

Since these are all more advanced parallel processing tools, though, we’ll defer further
details on this front until Chapter 5, especially its coverage of pipes and exit status
codes. And we’ll resurrect subprocess again in Chapter 6, to code a regression tester
that intercepts all three standard streams of spawned test scripts—inputs, outputs, and
errors.

But first, Chapter 4 continues our survey of Python system interfaces by exploring the
tools available for processing files and directories. Although we’ll be shifting focus
somewhat, we’ll find that some of what we’ve learned here will already begin to come
in handy as general system-related tools. Spawning shell commands, for instance, pro-
vides ways to inspect directories, and the file interface we will expand on in the next
chapter is at the heart of the stream processing techniques we have studied here.
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Python Versus csh

If you are familiar with other common shell script languages, it might be useful to see
how Python compares. Here is a simple script in a Unix shell language called csh that
mails all the files in the current working directory with a suffix of .py (i.e., all Python
source files) to a hopefully fictitious address:
#!/bin/csh
foreach x (*.py)
echo $x

mail eric@halfabee.com -s $x < $x
end

An equivalent Python script looks similar:

#!/usr/bin/python
import os, glob
for x in glob.glob('*.py'):
print(x)
os.system('mail eric@halfabee.com -s %s < %s' % (x, x))
but is slightly more verbose. Since Python, unlike csh, isn’t meant just for shell scripts,
system interfaces must be imported and called explicitly. And since Python isn’t just a
string-processing language, character strings must be enclosed in quotes, as in C.

Although this can add a few extra keystrokes in simple scripts like this, being a general-
purpose language makes Python a better tool once we leave the realm of trivial pro-
grams. We could, for example, extend the preceding script to do things like transfer
files by FTP, pop up a GUI message selector and status bar, fetch messages from an
SQL database, and employ COM objects on Windows, all using standard Python tools.

Python scripts also tend to be more portable to other platforms than csh. For instance,
if we used the Python SMTP interface module to send mail instead of relying on a Unix
command-line mail tool, the script would run on any machine with Python and an
Internet link (as we’ll see in Chapter 13, SMTP requires only sockets). And like C, we
don’t need $ to evaluate variables; what else would you expect in a free language?
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CHAPTER 4
File and Directory Tools

“Erase Your Hard Drive in Five Easy Steps!”

This chapter continues our look at system interfaces in Python by focusing on file and
directory-related tools. As you’ll see, it’s easy to process files and directory trees with
Python’s built-in and standard library support. Because files are part of the core Python
language, some of this chapter’s material is a review of file basics covered in books like
Learning Python, Fourth Edition, and we’ll defer to such resources for more back-
ground details on some file-related concepts. For example, iteration, context managers,
and the file object’s support for Unicode encodings are demonstrated along the way,
but these topics are not repeated in full here. This chapter’s goal is to tell enough of the
file story to get you started writing useful scripts.

File Tools

External files are at the heart of much of what we do with system utilities. For instance,
a testing system may read its inputs from one file, store program results in another file,
and check expected results by loading yet another file. Even user interface and Internet-
oriented programs may load binary images and audio clips from files on the underlying
computer. It’s a core programming concept.

In Python, the built-in open function is the primary tool scripts use to access the files
on the underlying computer system. Since this function is an inherent part of the Python
language, you may already be familiar with its basic workings. When called, the open
function returns a new file object that is connected to the external file; the file object
has methods that transfer data to and from the file and perform a variety of file-related
operations. The open function also provides a portable interface to the underlying file-
system—it works the same way on every platform on which Python runs.

Other file-related modules built into Python allow us to do things such as manipulate
lower-level descriptor-based files (os); copy, remove, and move files and collections of
files (os and shutil); store data and objects in files by key (dbm and shelve); and access
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SQL databases (sqlite3 and third-party add-ons). The last two of these categories are
related to database topics, addressed in Chapter 17.

In this section, we’ll take a brief tutorial look at the built-in file object and explore a
handful of more advanced file-related topics. As usual, you should consult either Py-
thon’s library manual or reference books such as Python Pocket Reference for further
details and methods we don’t have space to cover here. Remember, for quick interactive
help, you can also run dir(file) on an open file object to see an attributes list that
includes methods; help(file) for general help; and help(file.read) for help on a spe-
cific method such as read, though the file object implementation in 3.1 provides less
information for help than the library manual and other resources.

The File Object Model in Python 3.X

Just like the string types we noted in Chapter 2, file support in Python 3.X is a bit richer
than it was in the past. As we noted earlier, in Python 3.X str strings always represent
Unicode text (ASCII or wider), and bytes and bytearray strings represent raw binary
data. Python 3.X draws a similar and related distinction between files containing text
and binary data:

* Text files contain Unicode text. In your script, text file content is always a str
string—a sequence of characters (technically, Unicode “code points”). Text files
perform the automatic line-end translations described in this chapter by default
and automatically apply Unicode encodings to file content: they encode to and
decode from raw binary bytes on transfers to and from the file, according to a
provided or default encoding name. Encoding is trivial for ASCII text, but may be
sophisticated in other cases.

* Binary files contain raw 8-bit bytes. In your script, binary file content is always a
byte string, usually a bytes object—a sequence of small integers, which supports
most str operations and displays as ASCII characters whenever possible. Binary
files perform no translations of data when it is transferred to and from files: no line-
end translations or Unicode encodings are performed.

In practice, text files are used for all truly text-related data, and binary files store items
like packed binary data, images, audio files, executables, and so on. As a programmer
you distinguish between the two file types in the mode string argument you pass to
open: addinga “b” (e.g., 'rb', 'wb') means the file contains binary data. For coding new
file content, use normal strings for text (e.g., 'spam' or bytes.decode()) and byte strings
for binary (e.g., b'spam' or str.encode()).

Unless your file scope is limited to ASCII text, the 3.X text/binary distinction can
sometimes impact your code. Text files create and require str strings, and binary files
use byte strings; because you cannot freely mix the two string types in expressions, you
must choose file mode carefully. Many built-in tools we’ll use in this book make the
choice for us; the struct and pickle modules, for instance, deal in byte strings in 3.X,
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and the xml package in Unicode str. You must even be aware of the 3.X text/binary
distinction when using system tools like pipe descriptors and sockets, because they
transfer data as byte strings today (though their content can be decoded and encoded
as Unicode text if needed).

Moreover, because text-mode files require that content be decodable per a Unicode
encoding scheme, you must read undecodable file content in binary mode, as byte
strings (or catch Unicode exceptions in try statements and skip the file altogether).
This may include both truly binary files as well as text files that use encodings that are
nondefault and unknown. As we’ll see later in this chapter, because str strings are
always Unicode in 3.X, it’s sometimes also necessary to select byte string mode for the
names of files in directory tools such as os.listdir, glob.glob, and os.walk if they
cannot be decoded (passing in byte strings essentially suppresses decoding).

In fact, we’ll see examples where the Python 3.X distinction between str text and
bytes binary pops up in tools beyond basic files throughout this book—in Chapters
5 and 12 when we explore sockets; in Chapters 6 and 11 when we’ll need to ignore
Unicode errors in file and directory searches; in Chapter 12, where we’ll see how client-
side Internet protocol modules such as FTP and email, which run atop sockets, imply
file modes and encoding requirements; and more.

But just as for string types, although we will see some of these concepts in action in this
chapter, we’re going to take much of this story as a given here. File and string objects
are core language material and are prerequisite to this text. As mentioned earlier, be-
cause they are addressed by a 45-page chapter in the book Learning Python, Fourth
Edition, I won’t repeat their coverage in full in this book. If you find yourself confused
by the Unicode and binary file and string concepts in the following sections, I encourage
you to refer to that text or other resources for more background information in this
domain.

Using Built-in File Objects

Despite the text/binary dichotomy in Python 3.X, files are still very straightforward to
use. For most purposes, in fact, the open built-in function and its files objects are all
you need to remember to process files in your scripts. The file object returned by
open has methods for reading data (read, readline, readlines); writing data (write,
writelines); freeing system resources (close); moving to arbitrary positions in the file
(seek); forcing data in output buffers to be transferred to disk (flush); fetching the
underlying file handle (fileno); and more. Since the built-in file object is so easy to use,
let’s jump right into a few interactive examples.

Output files

To make a new file, call open with two arguments: the external name of the file to be
created and a mode stringw (short for write). To store data on the file, call the file object’s
write method with a string containing the data to store, and then call the close method
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to close the file. File write calls return the number of characters or bytes written (which
we’ll sometimes omit in this book to save space), and as we’ll see, close calls are often
optional, unless you need to open and read the file again during the same program or
session:

C:\temp> python

>>> file = open('data.txt', 'w') # open output file object: creates
>>> file.write('Hello file world!\n') # writes strings verbatim

18

>>> file.write('Bye file world.\n') # returns number chars/bytes written
18

>>> file.close() # closed on gc and exit too

And that’s it—you’ve just generated a brand-new text file on your computer, regardless
of the computer on which you type this code:

C:\temp> dir data.txt /B
data.txt

C:\temp> type data.txt
Hello file world!
Bye file world.

There is nothing unusual about the new file; here, I use the DOS dir and type com-
mands to list and display the new file, but it shows up in a file explorer GUI, too.

Opening. In the open function call shown in the preceding example, the first argument
can optionally specify a complete directory path as part of the filename string. If we
pass just a simple filename without a path, the file will appear in Python’s current
working directory. That is, it shows up in the place where the code is run. Here, the
directory C:\temp on my machine is implied by the bare filename data.txt, so this ac-
tually creates a file at C:\temp\data.txt. More accurately, the filename is relative to the
current working directory if it does not include a complete absolute directory path. See
“Current Working Directory” on page 104 (Chapter 3), for a refresher on this topic.

Also note that when opening in w mode, Python either creates the external file if it does
not yet exist or erases the file’s current contents if it is already present on your machine
(so be careful out there—you’ll delete whatever was in the file before).

Writing. Notice that we added an explicit \n end-of-line character to lines written to the
file; unlike the print built-in function, file object write methods write exactly what they
are passed without adding any extra formatting. The string passed to write shows up
character for character on the external file. In text files, data written may undergo line-
end or Unicode translations which we’ll describe ahead, but these are undone when
the data is later read back.

Output files also sport a writelines method, which simply writes all of the strings in a
list one at a time without adding any extra formatting. For example, here is a write
lines equivalent to the two write calls shown earlier:

file.writelines(['Hello file world!\n', 'Bye file world.\n'])
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This call isn’t as commonly used (and can be emulated with a simple for loop or other
iteration tool), but it is convenient in scripts that save output in a list to be written later.

Closing. The file close method used earlier finalizes file contents and frees up system
resources. For instance, closing forces buffered output data to be flushed out to disk.
Normally, files are automatically closed when the file object is garbage collected by the
interpreter (that is, when it is no longer referenced). This includes all remaining open
files when the Python session or program exits. Because of that, close calls are often
optional. In fact, it’s common to see file-processing code in Python in this idiom:

open('somefile.txt', 'w').write("G'day Bruce\n") # write to temporary object
open('somefile.txt', 'r').read() # read from temporary object

Since both these expressions make a temporary file object, use it immediately, and do
not save a reference to it, the file object is reclaimed right after data is transferred, and
is automatically closed in the process. There is usually no need for such code to call the
close method explicitly.

In some contexts, though, you may wish to explicitly close anyhow:

* Forone, because the Jython implementation relies on Java’s garbage collector, you
can’t always be as sure about when files will be reclaimed as you can in standard
Python. If you run your Python code with Jython, you may need to close manually
if many files are created in a short amount of time (e.g. in a loop), in order to avoid
running out of file resources on operating systems where this matters.

* For another, some IDEs, such as Python’s standard IDLE GUI, may hold on to
your file objects longer than you expect (in stack tracebacks of prior errors, for
instance), and thus prevent them from being garbage collected as soon as you might
expect. If you write to an output file in IDLE, be sure to explicitly close (or flush)
your file if you need to reliably read it back during the same IDLE session. Other-
wise, output buffers might not be flushed to disk and your file may be incomplete
when read.

* And while it seems very unlikely today, it’s not impossible that this auto-close on
reclaim file feature could change in future. This is technically a feature of the file
object’s implementation, which may or may not be considered part of the language
definition over time.

For these reasons, manual close calls are not a bad idea in nontrivial programs, even if
they are technically not required. Closing is a generally harmless but robust habit to
form.

Ensuring file closure: Exception handlers and context managers

Manual file close method calls are easy in straight-line code, but how do you ensure
file closure when exceptions might kick your program beyond the point where the close
call is coded? First of all, make sure you must—files close themselves when they are
collected, and this will happen eventually, even when exceptions occur.
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If closure is required, though, there are two basic alternatives: the try statement’s
finally clause is the most general, since it allows you to provide general exit actions
for any type of exceptions:
myfile = open(filename, 'w')
try:
...process myfile...
finally:
myfile.close()
In recent Python releases, though, the with statement provides a more concise alterna-
tive for some specific objects and exit actions, including closing files:
with open(filename, 'w') as myfile:
...process myfile, auto-closed on statement exit...
This statement relies on the file object’s context manager: code automatically run both
on statement entry and on statement exit regardless of exception behavior. Because the
file object’s exit code closes the file automatically, this guarantees file closure whether
an exception occurs during the statement or not.

The with statement is notably shorter (3 lines) than the try/finally alternative, but it’s
also less general—with applies only to objects that support the context manager pro-
tocol, whereas try/finally allows arbitrary exit actions for arbitrary exception con-
texts. While some other object types have context managers, too (e.g., thread locks),
with is limited in scope. In fact, if you want to remember just one exit actions option,
try/finally is the most inclusive. Still, with yields less code for files that must be closed
and can serve well in such specific roles. It can even save a line of code when no
exceptions are expected (albeit at the expense of further nesting and indenting file
processing logic):
myfile = open(filename, 'w') # traditional form

...process myfile...
myfile.close()

with open(filename) as myfile: # context manager form
...process myfile...

In Python 3.1 and later, this statement can also specify multiple (a.k.a. nested) context
managers—any number of context manager items may be separated by commas, and
multiple items work the same as nested with statements. In general terms, the 3.1 and
later code:

with A() as a, B() as b:
...statements...

Runs the same as the following, which works in 3.1, 3.0, and 2.6:

with A() as a:
with B() as b:
...statements...
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For example, when the with statement block exits in the following, both files’ exit
actions are automatically run to close the files, regardless of exception outcomes:
with open('data') as fin, open('results', 'w') as fout:
for line in fin:
fout.write(transform(line))

Context manager—dependent code like this seems to have become more common in
recent years, but this is likely at least in part because newcomers are accustomed to
languages that require manual close calls in all cases. In most contexts there is no need
to wrap all your Python file-processing code in with statements—the files object’s auto-
close-on-collection behavior often suffices, and manual close calls are enough for many
other scripts. You should use the with or try options outlined here only if you must
close, and only in the presence of potential exceptions. Since standard C Python auto-
matically closes files on collection, though, neither option is required in many (and
perhaps most) scripts.

Input files

Reading data from external files is just as easy as writing, but there are more methods
that let us load data in a variety of modes. Input text files are opened with either a mode
flag of r (for “read”) or no mode flag at all—it defaults to r if omitted, and it commonly
is. Once opened, we can read the lines of a text file with the readlines method:

C:\temp> python

>>> file = open('data.txt') # open input file object: 'r' default

>>> lines = file.readlines() # read into line string list

>>> for line in lines: # BUT use file line iterator! (ahead)
print(line, end="") # lines have a '\n' at end

Hello file world!
Bye file world.

The readlines method loads the entire contents of the file into memory and gives it to
our scripts as a list of line strings that we can step through in a loop. In fact, there are
many ways to read an input file:

file.read()

Returns a string containing all the characters (or bytes) stored in the file
file.read(N)

Returns a string containing the next N characters (or bytes) from the file
file.readline()

Reads through the next \n and returns a line string

file.readlines()
Reads the entire file and returns a list of line strings
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Let’s run these method calls to read files, lines, and characters from a text file—the
seek(0) call is used here before each test to rewind the file to its beginning (more on
this call in a moment):

>>> file.seek(0) # go back to the front of file
>>> file.read() # read entire file into string
'Hello file world!\nBye file world.\n'

>>> file.seek(0) # read entire file into lines list
>>> file.readlines()
['Hello file world!\n', 'Bye file world.\n']

>>> file.seek(0)

>>> file.readline() # read one line at a time
'Hello file world!\n'

>>> file.readline()

'Bye  file world.\n'

>>> file.readline() # empty string at end-of-file
>>> file.seek(0) # read N (or remaining) chars/bytes
>>> file.read(1), file.read(8) # empty string at end-of-file

('H', 'ello fil")

All of these input methods let us be specific about how much to fetch. Here are a few
rules of thumb about which to choose:

* read() and readlines() load the entire file into memory all at once. That makes
them handy for grabbing a file’s contents with as little code as possible. It also
makes them generally fast, but costly in terms of memory for huge files—loading
a multigigabyte file into memory is not generally a good thing to do (and might not
be possible at all on a given computer).

* On the other hand, because the readline() and read(N) calls fetch just part of the
file (the next line or N-character-or-byte block), they are safer for potentially big
files but a bit less convenient and sometimes slower. Both return an empty string
when they reach end-of-file. If speed matters and your files aren’t huge, read or
readlines may be a generally better choice.

» See also the discussion of the newer file iterators in the next section. As we’ll see,
iterators combine the convenience of readlines() with the space efficiency of read
line() and are the preferred way to read text files by lines today.

The seek(0) call used repeatedly here means “go back to the start of the file.” In our
example, it is an alternative to reopening the file each time. In files, all read and write
operations take place at the current position; files normally start at offset 0 when opened
and advance as data is transferred. The seek call simply lets us move to a new position
for the next transfer operation. More on this method later when we explore random
access files.
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Reading lines with file iterators

In older versions of Python, the traditional way to read a file line by line in a for loop
was to read the file into a list that could be stepped through as usual:
>>> file = open('data.txt")

>>> for line in file.readlines(): # DON'T DO THIS ANYMORE!
print(line, end="'")

If you’ve already studied the core language using a first book like Learning Python, you
may already know that this coding pattern is actually more work than is needed today—
both for you and your computer’s memory. In recent Pythons, the file object includes
an iterator which is smart enough to grab just one line per request in all iteration con-
texts, including for loops and list comprehensions. The practical benefit of this exten-
sion is that you no longer need to call readlines in a for loop to scan line by line—the
iterator reads lines on request automatically:
>>> file = open('data.txt")

>>> for line in file: # no need to call readlines
print(line, end="") # iterator reads next line each time

Hello file world!
Bye file world.

Better still, you can open the file in the loop statement itself, as a temporary which will
be automatically closed on garbage collection when the loop ends (that’s normally the
file’s sole reference):

>>> for line in open('data.txt'): # even shorter: temporary file object
print(line, end="") # auto-closed when garbage collected

Hello file world!
Bye file world.

Moreover, this file line-iterator form does not load the entire file into a line’s list all at
once, so it will be more space efficient for large text files. Because of that, this is the
prescribed way to read line by line today. If you want to see what really happens inside
the for loop, you can use the iterator manually; it’s justa __next_ method (run by the
next built-in function), which is similar to calling the readline method each time
through, except that read methods return an empty string at end-of-file (EOF) and the
iterator raises an exception to end the iteration:

>>> file = open('data.txt') # read methods: empty at EOF

>>> file.readline()

'Hello file world!\n'

>>> file.readline()

'Bye  file world.\n'
>>> file.readline()

>>> file = open('data.txt") # iterators: exception at EOF
>>> file.__next_ () # no need to call iter(file) first,
'Hello file world!\n' # since files are their own iterator
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>>> file.__next_ ()

'Bye  file world.\n'

>>> file.__next_ ()

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

StopIteration

Interestingly, iterators are automatically used in all iteration contexts, including the
list constructor call, list comprehension expressions, map calls, and in membership

checks:

>>> open('data.txt').readlines() # always read lines
['Hello file world!\n', 'Bye file world.\n']

>>> list(open('data.txt"')) # force line iteration
['Hello file world!\n', 'Bye file world.\n']

>>> lines = [line.rstrip() for line in open('data.txt')] # comprehension
>>> lines
['Hello file world!', 'Bye file world.']

>>> lines = [line.upper() for line in open('data.txt')] # arbitrary actions
>>> lines
['HELLO FILE WORLD!\n', '"BYE  FILE WORLD.\n']

>>> list(map(str.split, open('data.txt'))) # apply a function
[['Hello', 'file', 'world!'], ['Bye', 'file', 'world.']]

>>> line = 'Hello file world!\n'
>>> line in open('data.txt') # line membership
True

[terators may seem somewhat implicit at first glance, but they’re representative of the
many ways that Python makes developers’ lives easier over time.

Other open options

Besides the w and (default) r file open modes, most platforms support an a mode string,
meaning “append.” In this output mode, write methods add data to the end of the file,
and the open call will not erase the current contents of the file:

>>> file = open('data.txt', 'a') # open in append mode: doesn't erase
>>> file.write('The Life of Brian') # added at end of existing data

>>> file.close()

>>>

>>> open('data.txt').read() # open and read entire file

'Hello file world!\nBye file world.\nThe Life of Brian'

In fact, although most files are opened using the sorts of calls we just ran, open actually
supports additional arguments for more specific processing needs, the first three of
which are the most commonly used—the filename, the open mode, and a buffering
specification. All but the first of these are optional: if omitted, the open mode argument
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defaults to r (input), and the buffering policy is to enable full buffering. For special
needs, here are a few things you should know about these three open arguments:

Filename

As mentioned earlier, filenames can include an explicit directory path to refer to
files in arbitrary places on your computer; if they do not, they are taken to be names
relative to the current working directory (described in the prior chapter). In general,
most filename forms you can type in your system shell will work in an open call.
For instance, a relative filename argument r'..\temp\spam.txt' on Windows
means spam.txt in the temp subdirectory of the current working directory’s
parent—up one, and down to directory temp.

Open mode

The open function accepts other modes, too, some of which we’ll see at work later
in this chapter: r+, w+, and a+ to open for reads and writes, and any mode string
with a b to designate binary mode. For instance, mode r+ means both reads and
writes are allowed on an existing file; w+ allows reads and writes but creates the file
anew, erasing any prior content; rb and wb read and write data in binary mode
without any translations; and wb+ and r+b both combine binary mode and input
plus output. In general, the mode string defaults to r for read but can be w for write
and a for append, and you may add a + for update, as well as a b or t for binary or
text mode; order is largely irrelevant.

As we’ll see later in this chapter, the + modes are often used in conjunction with
the file object’s seek method to achieve random read/write access. Regardless of
mode, file contents are always strings in Python programs—read methods return
a string, and we pass a string to write methods. As also described later, though, the
mode string implies which type of string is used: str for text mode or bytes and
other byte string types for binary mode.
Buffering policy

The open call also takes an optional third buffering policy argument which lets you
control buffering for the file—the way that data is queued up before being trans-
ferred, to boost performance. If passed, 0 means file operations are unbuffered
(data is transferred immediately, but allowed in binary modes only), 1 means they
are line buffered, and any other positive value means to use a full buffering (which
is the default, if no buffering argument is passed).

As usual, Python’s library manual and reference texts have the full story on additional
open arguments beyond these three. For instance, the open call supports additional
arguments related to the end-of-line mapping behavior and the automatic Unicode
encoding of content performed for text-mode files. Since we’ll discuss both of these
concepts in the next section, let’s move ahead.
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Binary and Text Files

All of the preceding examples process simple text files, but Python scripts can also open
and process files containing binary data—]JPEG images, audio clips, packed binary data
produced by FORTRAN and C programs, encoded text, and anything else that can be
stored in files as bytes. The primary difference in terms of your code is the mode argu-
ment passed to the built-in open function:

>>> file
>>> file

open('data.txt', 'wb') # open binary output file
open('data.txt’, 'rb") # open binary input file

Once you’ve opened binary files in this way, you may read and write their contents
using the same methods just illustrated: read, write, and so on. The readline and
readlines methods as well as the file’s line iterator still work here for text files opened
in binary mode, but they don’t make sense for truly binary data that isn’t line oriented
(end-of-line bytes are meaningless, if they appear at all).

In all cases, data transferred between files and your programs is represented as Python
strings within scripts, even if it is binary data. For binary mode files, though, file content
is represented as byte strings. Continuing with our text file from preceding examples:

>>> open('data.txt').read() # text mode: str
'Hello file world!\nBye file world.\nThe Life of Brian'

>>> open('data.txt’, 'rb').read() # binary mode: bytes
b'Hello file world!\r\nBye file world.\r\nThe Life of Brian'

>>> file = open('data.txt', 'rb")
>>> for line in file: print(line)

b'Hello file world!\r\n'
b'Bye  file world.\r\n'
b'The Life of Brian'

This occurs because Python 3.X treats text-mode files as Unicode, and automatically
decodes content on input and encodes it on output. Binary mode files instead give us
access to file content as raw byte strings, with no translation of content—they reflect
exactly what is stored on the file. Because str strings are always Unicode text in 3.X,
the special bytes string is required to represent binary data as a sequence of byte-size
integers which may contain any 8-bit value. Because normal and byte strings have al-
most identical operation sets, many programs can largely take this on faith; but keep
in mind that you really must open truly binary data in binary mode for input, because
it will not generally be decodable as Unicode text.

Similarly, you must also supply byte strings for binary mode output—normal strings
are not raw binary data, but are decoded Unicode characters (a.k.a. code points) which
are encoded to binary on text-mode output:

>>> open('data.bin', 'wb').write(b'Spam\n')

5
>>> open('data.bin', 'rb').read()
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b'Spam\n'

>>> open('data.bin', 'wb').write('spam\n')

TypeError: must be bytes or buffer, not str
Butnotice that this file’s line ends with just \n, instead of the Windows \r\n that showed
up in the preceding example for the text file in binary mode. Strictly speaking, binary
mode disables Unicode encoding translation, but it also prevents the automatic end-
of-line character translation performed by text-mode files by default. Before we can
understand this fully, though, we need to study the two main ways in which text files
differ from binary.

Unicode encodings for text files

As mentioned earlier, text-mode file objects always translate data according to a default
or provided Unicode encoding type, when the data is transferred to and from external
file. Their content is encoded on files, but decoded in memory. Binary mode files don’t
perform any such translation, which is what we want for truly binary data. For instance,
consider the following string, which embeds a Unicode character whose binary value
is outside the normal 7-bit range of the ASCII encoding standard:

>>> data = "sp\xeqm'

>>> data

"spam’

>>> oxe4, bin(oxeq), chr(oxes)

(228, 'ob11100100', '3")

It’s possible to manually encode this string according to a variety of Unicode encoding
types—its raw binary byte string form is different under some encodings:

>>> data.encode('latin1') # 8-bit characters: ascii + extras
b'sp\xe4m’
>>> data.encode('utf8") # 2 bytes for special characters only

b'sp\xc3\xa4m'

>>> data.encode('ascii') # does not encode per ascii
UnicodeEncodeError: 'ascii' codec can't encode character '\xe4' in position 2:
ordinal not in range(128)

Python displays printable characters in these strings normally, but nonprintable bytes
show as \xNN hexadecimal escapes which become more prevalent under more sophis-
ticated encoding schemes (cp500 in the following is an EBCDIC encoding):

>>> data.encode('utf16') # 2 bytes per character plus preamble
b' \xff\xfes\x00p\x00\xe4\x00m\x00"

>>> data.encode('cp500') # an ebcdic encoding: very different
b'\xa2\x97C\x94'

The encoded results here reflect the string’s raw binary form when stored in files. Man-
ual encoding is usually unnecessary, though, because text files handle encodings
automatically on data transfers—reads decode and writes encode, according
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to the encoding name passed in (or a default for the underlying platform: see
sys.getdefaultencoding). Continuing our interactive session:

>>> open('data.txt’', 'w', encoding='latin1').write(data)

4

>>> open('data.txt’, 'r', encoding='latini').read()
'spam'

>>> open('data.txt’, 'rb').read()

b'sp\xe4m’

If we open in binary mode, though, no encoding translation occurs—the last command
in the preceding example shows us what’s actually stored on the file. To see how file
content differs for other encodings, let’s save the same string again:

>>> open('data.txt’, 'w', encoding='utf8').write(data) # encode data per utf8

4

>>> open('data.txt’, 'r', encoding='utf8').read() # decode: undo encoding
'spam'

>>> open('data.txt’, 'rb').read() # no data translations

b'sp\xc3\xa4m'

This time, raw file content is different, but text mode’s auto-decoding makes the string
the same by the time it’s read back by our script. Really, encodings pertain only to
strings while they are in files; once they are loaded into memory, strings are simply
sequences of Unicode characters (“code points”). This translation step is what we want
for text files, but not for binary. Because binary modes skip the translation, you’ll want
to use them for truly binary data. If fact, you usually must—trying to write unencodable
data and attempting to read undecodable data is an error:
>>> open('data.txt’', 'w', encoding='ascii').write(data)

UnicodeEncodeError: 'ascii' codec can't encode character '\xe4' in position 2:
ordinal not in range(128)

>>> open(r'C:\Python31\python.exe', 'r').read()
UnicodeDecodeError: 'charmap' codec can't decode byte 0x90 in position 2:
character maps to <undefined>

Binary mode is also a last resort for reading text files, if they cannot be decoded per the
underlying platform’s default, and the encoding type is unknown—the following re-
creates the original strings if encoding type is known, but fails if it is not known unless
binary mode is used (such failure may occur either on inputting the data or printing it,
but it fails nevertheless):

>>> open('data.txt', 'w', encoding='cp500').writelines(['spam\n', 'ham\n'])

>>> open('data.txt’', 'r', encoding='cp500').readlines()
['spam\n', "ham\n']

>>> open('data.txt', 'r').readlines()
UnicodeDecodeError: 'charmap' codec can't decode byte 0x81 in position 2:
character maps to <undefined>

>>> open('data.txt’, 'rb').readlines()
[b"\xa2\x97\x81\x94\r%\x88\x81\x94\1r%" ]
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>>> open('data.txt', 'rb').read()
b'\xa2\x97\x81\x94\r%\x88\x81\x94\r%"

If all your text is ASCII you generally can ignore encoding altogether; data in files maps
directly to characters in strings, because ASCII is a subset of most platforms’ default
encodings. If you must process files created with other encodings, and possibly on
different platforms (obtained from the Web, for instance), binary mode may be required
if encoding type is unknown. Keep in mind, however, that text in still-encoded binary
form might not work as you expect: because it is encoded per a given encoding scheme,
it might not accurately compare or combine with text encoded in other schemes.

Again, see other resources for more on the Unicode story. We’ll revisit the Unicode
story at various points in this book, especially in Chapter 9, to see how it relates to the
tkinter Text widget, and in Part IV, covering Internet programming, to learn what it
means for data shipped over networks by protocols such as FTP, email, and the Web
at large. Text files have another feature, though, which is similarly a nonfeature for
binary data: line-end translations, the topic of the next section.

End-of-line translations for text files

For historical reasons, the end of a line of text in a file is represented by different char-
acters on different platforms. It’s a single \n character on Unix-like platforms, but the
two-character sequence \r\n on Windows. That’s why files moved between Linux and
Windows may look odd in your text editor after transfer—they may still be stored using
the original platform’s end-of-line convention.

For example, most Windows editors handle text in Unix format, but Notepad has been
a notable exception—text files copied from Unix or Linux may look like one long line
when viewed in Notepad, with strange characters inside (\n). Similarly, transferring a
file from Windows to Unix in binary mode retains the \r characters (which often appear
as "M in text editors).

Python scripts that process text files don’t normally have to care, because the files object
automatically maps the DOS \r\n sequence to a single \n. It works like this by default—
when scripts are run on Windows:

* For files opened in text mode, \r\n is translated to \n when input.

* For files opened in text mode, \n is translated to \r\n when output.

* For files opened in binary mode, no translation occurs on input or output.
On Unix-like platforms, no translations occur, because \n is used in files. You should
keep in mind two important consequences of these rules. First, the end-of-line character
for text-mode files is almost always represented as a single \n within Python scripts,

regardless of how it is stored in external files on the underlying platform. By mapping
to and from \n on input and output, Python hides the platform-specific difference.

The second consequence of the mapping is subtler: when processing binary files, binary
open modes (e.g, rb, wb) effectively turn off line-end translations. If they did not, the
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translations listed previously could very well corrupt data as it is input or output—a
random \r in data might be dropped on input, or added for a \n in the data on output.
The net effect is that your binary data would be trashed when read and written—
probably not quite what you want for your audio files and images!

This issue has become almost secondary in Python 3.X, because we generally cannot
use binary data with text-mode files anyhow—because text-mode files automatically
apply Unicode encodings to content, transfers will generally fail when the data cannot
be decoded on input or encoded on output. Using binary mode avoids Unicode errors,
and automatically disables line-end translations as well (Unicode error can be caught
in try statements as well). Still, the fact that binary mode prevents end-of-line transla-
tions to protect file content is best noted as a separate feature, especially if you work
in an ASCII-only world where Unicode encoding issues are irrelevant.

Here’s the end-of-line translation at work in Python 3.1 on Windows—text mode
translates to and from the platform-specific line-end sequence so our scripts are
portable:

>>> open('temp.txt', 'w').write('shrubbery\n') # text output mode: \n -> \r\n

10

>>> open('temp.txt’, 'rb').read() # binary input: actual file bytes
b'shrubbery\r\n'

>>> open('temp.txt', 'r').read() # test input mode: \r\n -> \n
"shrubbery\n'

By contrast, writing data in binary mode prevents all translations as expected, even if
the data happens to contain bytes that are part of line-ends in text mode (byte strings
print their characters as ASCII if printable, else as hexadecimal escapes):

>>> data = b'a\ob\rc\r\nd' # 4 escape code bytes, 4 normal
>>> len(data)

8

>>> open('temp.bin', 'wb').write(data) # write binary data to file as is
8

>>> open('temp.bin', 'rb').read() # read as binary: no translation

b'a\x00b\rc\r\nd"'

But reading binary data in text mode, whether accidental or not, can corrupt the data
when transferred because of line-end translations (assuming it passes as decodable at
all; ASCII bytes like these do on this Windows platform):

>>> open('temp.bin', 'r').read() # text mode read: botches \r !
"a\xoob\nc\nd"'

Similarly, writing binary data in text mode can have as the same effect—Iline-end bytes
may be changed or inserted (again, assuming the data is encodable per the platform’s

default):

>>> open('temp.bin', 'w').write(data) # must pass str for text mode
TypeError: must be str, not bytes # use bytes.decode() for to-str
>>> data.decode()

"a\x00b\rc\r\nd'
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>>> open('temp.bin', 'w').write(data.decode())

8

>>> open('temp.bin', 'rb').read() # text mode write: added \r !
b'a\xoob\rc\r\r\nd'

>>> open('temp.bin', 'r').read() # again drops, alters \r on input
'a\x00b\nc\n\nd'

The short story to remember here is that you should generally use \n to refer to end-
line in all your text file content, and you should always open binary data in binary file
modes to suppress both end-of-line translations and any Unicode encodings. A file’s
content generally determines its open mode, and file open modes usually process file
content exactly as we want.

Keep in mind, though, that you might also need to use binary file modes for text in
special contexts. For instance, in Chapter 6’s examples, we’ll sometimes open text files
in binary mode to avoid possible Unicode decoding errors, for files generated on arbi-
trary platforms that may have been encoded in arbitrary ways. Doing so avoids encod-
ing errors, but also can mean that some text might not work as expected—searches
might not always be accurate when applied to such raw text, since the search key must
be in bytes string formatted and encoded according to a specific and possibly incom-
patible encoding scheme.

In Chapter 11’s PyEdit, we’ll also need to catch Unicode exceptions in a “grep” direc-
tory file search utility, and we’ll go further to allow Unicode encodings to be specified
for file content across entire trees. Moreover, a script that attempts to translate between
different platforms’ end-of-line character conventions explicitly may need to read text
in binary mode to retain the original line-end representation truly present in the file; in
text mode, they would already be translated to \n by the time they reached the script.

It’s also possible to disable or further tailor end-of-line translations in text mode with
additional open arguments we will finesse here. See the newline argument in open ref-
erence documentation for details; in short, passing an empty string to this argument
also prevents line-end translation but retains other text-mode behavior. For this chap-
ter, let’s turn next to two common use cases for binary data files: packed binary data
and random access.

Parsing packed binary data with the struct module

By using the letter b in the open call, you can open binary datafiles in a platform-neutral
way and read and write their content with normal file object methods. But how do you
process binary data once it has been read? It will be returned to your script as a simple
string of bytes, most of which are probably not printable characters.

If you just need to pass binary data along to another file or program, your work is
done—for instance, simply pass the byte string to another file opened in binary mode.
And if you just need to extract a number of bytes from a specific position, string slicing
will do the job; you can even follow up with bitwise operations if you need to. To get
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at the contents of binary data in a structured way, though, as well as to construct its
contents, the standard library struct module is a more powerful alternative.

The struct module provides calls to pack and unpack binary data, as though the data
was laid out in a C-language struct declaration. It is also capable of composing and
decomposing using any endian-ness you desire (endian-ness determines whether the
most significant bits of binary numbers are on the left or right side). Building a binary
datafile, for instance, is straightforward—pack Python values into a byte string and
write them to a file. The format string here in the pack call means big-endian (>), with
an integer, four-character string, half integer, and floating-point number:

>>> import struct

>>> data = struct.pack('>i4shf', 2, 'spam', 3, 1.234)

>>> data

b'\x00\x00\x00\x02spam\x00\x03?\x9d\xf3\xb6"

>>> file = open('data.bin', 'wb")

>>> file.write(data)

14
>>> file.close()

Notice how the struct module returns a bytes string: we’re in the realm of binary data
here, not text, and must use binary mode files to store. As usual, Python displays most
of the packed binary data’s bytes here with \xNN hexadecimal escape sequences, because
the bytes are not printable characters. To parse data like that which we just produced,
read it off the file and pass it to the struct module with the same format string—you
get back a tuple containing the values parsed out of the string and converted to Python
objects:

>>> import struct

>>> file = open('data.bin’, 'rb')

>>> bytes = file.read()

>>> values = struct.unpack('>i4shf', data)

>>> values
(2, b'spam', 3, 1.2339999675750732)

Parsed-out strings are byte strings again, and we can apply string and bitwise operations
to probe deeper:

>>> bin(values[0] | ob1) # accessing bits and bytes

"oba1

>>> values[1], list(values[1]), values[1][0]
(b'spam', [115, 112, 97, 109], 115)

Also note that slicing comes in handy in this domain; to grab just the four-character
string in the middle of the packed binary data we just read, we can simply slice it out.
Numeric values could similarly be sliced out and then passed to struct.unpack for
conversion:

>>> bytes

b'\x00\x00\x00\x02spam\x00\x03?\x9d\xf3\xb6'

>>> bytes[4:8]

b'spam’
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>>> number = bytes[8:10]

>>> number

b'\x00\x03"

>>> struct.unpack('>h', number)

(3,)

Packed binary data crops up in many contexts, including some networking tasks, and
in data produced by other programming languages. Because it’s not part of every pro-
gramming job’s description, though, we’ll defer to the struct module’s entry in the
Python library manual for more details.

Random access files

Binary files also typically see action in random access processing. Earlier, we mentioned
that adding a + to the open mode string allows a file to be both read and written. This
mode is typically used in conjunction with the file object’s seek method to support
random read/write access. Such flexible file processing modes allow us to read bytes
from one location, write to another, and so on. When scripts combine this with binary
file modes, they may fetch and update arbitrary bytes within a file.

We used seek earlier to rewind files instead of closing and reopening. As mentioned,
read and write operations always take place at the current position in the file; files
normally start at offset 0 when opened and advance as data is transferred. The seek call
lets us move to a new position for the next transfer operation by passing in a byte offset.

Python’s seek method also accepts an optional second argument that has one of three
values—O for absolute file positioning (the default); 1 to seek relative to the current
position; and 2 to seek relative to the file’s end. That’s why passing just an offset of 0
to seek is roughly a file rewind operation: it repositions the file to its absolute start. In
general, seek supports random access on a byte-offset basis. Seeking to a multiple of a
record’s size in a binary file, for instance, allows us to fetch a record by its relative
position.

Although you can use seek without + modes in open (e.g., to just read from random
locations), it’s most flexible when combined with input/output files. And while you
can perform random access in text mode, too, the fact that text modes perform Unicode
encodings and line-end translations make them difficult to use when absolute byte
offsets and lengths are required for seeks and reads—your data may look very different
when stored in files. Text mode may also make your data nonportable to platforms
with different default encodings, unless you’re willing to always specify an explicit
encoding for opens. Except for simple unencoded ASCII text without line-ends, seek
tends to works best with binary mode files.

To demonstrate, let’s create a file in w+b mode (equivalent to wb+) and write some data
to it; this mode allows us to both read and write, but initializes the file to be empty if
it’s already present (all w modes do). After writing some data, we seek back to file start
to read its content (some integer return values are omitted in this example again for
brevity):
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>>> records = [bytes([char] * 8) for char in b'spam']
>>> records
[b'ssssssss', b'pppppppp', b'aaaaaaaa’, b'mmmmmmmm' ]

>>> file = open('random.bin', 'w+b')
>>> for rec in records: # write four records
size = file.write(rec) # bytes for binary mode

>>> file.flush()

>>> pos = file.seek(0) # read entire file
>>> print(file.read())

b'ssssssssppppppppaaaaaaaammmmmmmm’

Now, let’s reopen our file in r+b mode; this mode allows both reads and writes again,
but does not initialize the file to be empty. This time, we seek and read in multiples of
the size of data items (“records”) stored, to both fetch and update them at random:
c:\temp> python
>>> file = open('random.bin', 'r+b')
>>> print(file.read()) # read entire file
b'ssssssssppppppppaaaaaaaammmmmmmm '

>>> record = b'X' * 8

>>> file.seek(0) # update first record
>>> file.write(record)
>>> file.seek(len(record) * 2) # update third record

>>> file.write(b'Y' * 8)

>>> file.seek(8)

>>> file.read(len(record)) # fetch second record
b*pppppppp’

>>> file.read(len(record)) # fetch next (third) record
b'YYYYYYYY'

>>> file.seek(0) # read entire file

>>> file.read()
b ' XXXXXXXXppppppppYYYYYYYYmmmmmmmm '

c:\temp> type random.bin # the view outside Python
XXXXXXXXppppppppYYYYYYYYmmmmmmmm

Finally, keep in mind that seek can be used to achieve random access, even if it’s just
for input. The following seeks in multiples of record size to read (but not write) fixed-
length records at random. Notice that it also uses r text mode: since this data is simple
ASCII text bytes and has no line-ends, text and binary modes work the same on this
platform:

c:\temp> python

>>> file = open('random.bin’, 'r') # text mode ok if no encoding/endlines
>>> reclen = 8

>>> file.seek(reclen * 3) # fetch record 4

>>> file.read(reclen)

" mmmmmmmm "

>>> file.seek(reclen * 1) # fetch record 2

>>> file.read(reclen)
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"pppppppp’

>>> file = open('random.bin’, 'rb') # binary mode works the same here
>>> file.seek(reclen * 2) # fetch record 3

>>> file.read(reclen) # returns byte strings
b'YYYYYYYY'

But unless your file’s content is always a simple unencoded text form like ASCII and
has no translated line-ends, text mode should not generally be used if you are going to
seek—Iline-ends may be translated on Windows and Unicode encodings may make
arbitrary transformations, both of which can make absolute seek offsets difficult to use.
In the following, for example, the positions of characters after the first non-ASCII no
longer match between the string in Python and its encoded representation on the file:

>>> data = 'sp\xeqm' # data to your script
>>> data, len(data) # 4 unicode chars, 1 nonascii
("spam’, 4)

>>> data.encode('utf8'), len(data.encode('utf8')) # bytes written to file
(b'sp\xc3\xa4m', 5)

>>> f = open('test', mode="w+', encoding='utf8") # use text mode, encoded
>>> f.write(data)
>>> f.flush()

>>> f.seek(0); f.read(1) # ascii bytes work

o

>>> f.seek(2); f.read(1) # as does 2-byte nonascii
g

>>> data[3] # but offset 3 is not 'm' !
T

>>> f.seek(3); f.read(1)
UnicodeDecodeError: 'utf8' codec can't decode byte Oxa4 in position 0:
unexpected code byte

As you can see, Python’s file modes provide flexible file processing for programs that

require it. In fact, the os module offers even more file processing options, as the next
section describes.

Lower-Level File Tools in the os Module

The os module contains an additional set of file-processing functions that are distinct
from the built-in file object tools demonstrated in previous examples. For instance, here
is a partial list of os file-related calls:

os.open( path, flags, mode )
Opens a file and returns its descriptor

os.read( descriptor, N)
Reads at most N bytes and returns a byte string

os.write( descriptor, string)
Writes bytes in byte string string to the file
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os.lseek( descriptor, position , how)
Moves to position in the file

Technically, os calls process files by their descriptors, which are integer codes or “han-
dles” thatidentify files in the operating system. Descriptor-based files deal in raw bytes,
and have no notion of the line-end or Unicode translations for text that we studied in
the prior section. In fact, apart from extras like buffering, descriptor-based files gener-
ally correspond to binary mode file objects, and we similarly read and write bytes
strings, not str strings. However, because the descriptor-based file tools in os are lower
level and more complex than the built-in file objects created with the built-in open
function, you should generally use the latter for all but very special file-processing
needs.’

Using os.open files

To give you the general flavor of this tool set, though, let’s run a few interactive ex-
periments. Although built-in file objects and os module descriptor files are processed
with distinct tool sets, they are in fact related—the file system used by file objects simply
adds a layer of logic on top of descriptor-based files.

In fact, the fileno file object method returns the integer descriptor associated with a
built-in file object. For instance, the standard stream file objects have descriptors 0, 1,
and 2; calling the os.write function to send data to stdout by descriptor has the same
effect as calling the sys.stdout.write method:

>>> import sys
>>> for stream in (sys.stdin, sys.stdout, sys.stderr):
print(stream.fileno())

0
1
2

>>> sys.stdout.write('Hello stdio world\n') # write via file method
Hello stdio world

18

>>> import os

>>> os.write(1, b'Hello descriptor world\n') # write via os module
Hello descriptor world

23

Because file objects we open explicitly behave the same way, it’s also possible to process
a given real external file on the underlying computer through the built-in open function,
tools in the os module, or both (some integer return values are omitted here for brevity):

* For instance, to process pipes, described in Chapter 5. The Python os.pipe call returns two file descriptors,
which can be processed with os module file tools or wrapped in a file object with os.fdopen. When used with
descriptor-based file tools in os, pipes deal in byte strings, not text. Some device files may require lower-level
control as well.

156 | Chapter4: File and Directory Tools



>>> file = open(r'C:\temp\spam.txt', 'w') # create external file, object

>>> file.write('Hello stdio file\n') # write via file object method
>>> file.flush() # else os.write to disk first!
>>> fd = file.fileno() # get descriptor from object
>>> fd

3

>>> import os
>>> os.urite(fd, b'Hello descriptor file\n') # write via os module
>>> file.close()

C:\temp> type spam.txt # lines from both schemes
Hello stdio file
Hello descriptor file

os.open mode flags

So why the extra file tools in os? In short, they give more low-level control over file
processing. The built-in open function is easy to use, but it may be limited by the un-
derlying filesystem that it uses, and it adds extra behavior that we do not want. The
os module lets scripts be more specific—for example, the following opens a descriptor-
based file in read-write and binary modes by performing a binary “or” on two mode
flags exported by os:

>>> fdfile = os.open(r'C:\temp\spam.txt', (os.0_RDWR | os.0_BINARY))
>>> os.read(fdfile, 20)
b'Hello stdio file\r\nHe'

>>> os.lseek(fdfile, 0, 0) # go back to start of file
>>> os.read(fdfile, 100) # binary mode retains "\r\n"
b'Hello stdio file\r\nHello descriptor file\n'

>>> os.lseek(fdfile, 0, 0)
>>> os.write(fdfile, b'HELLO") # overwrite first 5 bytes
5

C:\temp> type spam.txt
HELLO stdio file
Hello descriptor file

In this case, binary mode strings rb+ and r+b in the basic open call are equivalent:

>>> file = open(r'C:\temp\spam.txt', 'rb+") # same but with open/objects
>>> file.read(20)

b'HELLO stdio file\r\nHe'

>>> file.seek(0)

>>> file.read(100)

b'HELLO stdio file\r\nHello descriptor file\n'
>>> file.seek(0)

>>> file.write(b'Jello")

5

>>> file.seek(0)

>>> file.read()

b'Jello stdio file\r\nHello descriptor file\n'
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But on some systems, os.open flags let us specify more advanced things like exclusive
access (0_EXCL) and nonblocking modes (0_NONBLOCK) when a file is opened. Some of
these flags are not portable across platforms (another reason to use built-in file objects
most of the time); see the library manual or run a dir(os) call on your machine for an
exhaustive list of other open flags available.

One final note here: using os.open with the 0_EXCL flag is the most portable way to lock
files for concurrent updates or other process synchronization in Python today. We’ll
see contexts where this can matter in the next chapter, when we begin to explore
multiprocessing tools. Programs running in parallel on a server machine, for instance,
may need to lock files before performing updates, if multiple threads or processes might
attempt such updates at the same time.

Wrapping descriptors in file objects

We saw earlier how to go from file object to field descriptor with the fileno file object
method; given a descriptor, we can use os module tools for lower-level file access to
the underlying file. We can also go the other way—the os.fdopen call wraps a file de-
scriptor in a file object. Because conversions work both ways, we can generally use
either tool set—file object or os module:

>>> fdfile = os.open(r'C:\temp\spam.txt', (os.0_RDWR | os.0_BINARY))

>>> fdfile

3

>>> objfile = os.fdopen(fdfile, 'rb")

>>> objfile.read()

b'Jello stdio file\r\nHello descriptor file\n'

In fact, we can wrap a file descriptor in either a binary or text-mode file object: in text
mode, reads and writes perform the Unicode encodings and line-end translations we
studied earlier and deal in str strings instead of bytes:

C:\...\PP4E\System> python

>>> import os

>>> fdfile = os.open(r'C:\temp\spam.txt', (os.0_RDWR | os.0_BINARY))

>>> objfile = os.fdopen(fdfile, 'r')

>>> objfile.read()

'Jello stdio file\nHello descriptor file\n'

In Python 3.X, the built-in open call also accepts a file descriptor instead of a file name
string; in this mode it works much like os.fdopen, but gives you greater control—for
example, you can use additional arguments to specify a nondefault Unicode encoding
for text and suppress the default descriptor close. Really, though, os.fdopen accepts
the same extra-control arguments in 3.X, because it has been redefined to do little but
call back to the built-in open (see 0s.py in the standard library):

C:\...\PP4E\System> python

>>> import os

>>> fdfile = os.open(r'C:\temp\spam.txt', (os.0_RDWR | os.0_BINARY))

>>> fdfile

3
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>>> objfile = open(fdfile, 'r', encoding='latini', closefd=False)
>>> objfile.read()
'Jello stdio file\nHello descriptor file\n'

>>> objfile = os.fdopen(fdfile, 'r', encoding='latini', closefd=True)
>>> objfile.seek(0)

>>> objfile.read()

'Jello stdio file\nHello descriptor file\n'

We’ll make use of this file object wrapper technique to simplify text-oriented pipes and
other descriptor-like objects later in this book (e.g., sockets have a makefile method
which achieves similar effects).

Other os module file tools

The os module also includes an assortment of file tools that accept a file pathname
string and accomplish file-related tasks such as renaming (os.rename), deleting
(os.remove), and changing the file’s owner and permission settings (os.chown,
os.chmod). Let’s step through a few examples of these tools in action:

>>> os.chmod('spam.txt', 00777) # enable all accesses

This os.chmod file permissions call passes a 9-bit string composed of three sets of three
bits each. From left to right, the three sets represent the file’s owning user, the file’s
group, and all others. Within each set, the three bits reflect read, write, and execute
access permissions. When a bit is “1” in this string, it means that the corresponding
operation is allowed for the assessor. For instance, octal 0777 is a string of nine “1”
bits in binary, so it enables all three kinds of accesses for all three user groups; octal
0600 means that the file can be read and written only by the user that owns it (when
written in binary, 0600 octal is really bits 110 000 000).

This scheme stems from Unix file permission settings, but the call works on Windows
as well. If it’s puzzling, see your system’s documentation (e.g., a Unix manpage) for
chmod. Moving on:

>>> os.rename(r'C:\temp\spam.txt', r'C:\temp\eggs.txt"') # from, to

>>> os.remove(r'C:\temp\spam.txt') # delete file?
WindowsError: [Error 2] The system cannot find the file specified: 'C:\\temp\\...'

>>> os.remove(r'C:\temp\eggs.txt"')

The os.rename call used here changes a file’s name; the os.remove file deletion call
deletes a file from your system and is synonymous with os.unlink (the latter reflects
the call’s name on Unix but was obscure to users of other platforms).™ The os module
also exports the stat system call:

t For related tools, see also the shutil module in Python’s standard library; it has higher-level tools for copying
and removing files and more. We’ll also write directory compare, copy, and search tools of our own in
Chapter 6, after we’ve had a chance to study the directory tools presented later in this chapter.

File Tools | 159



>>> open('spam.txt', 'w').write('Hello stat world\n') # +1 for \r added
17

>>> import os

>>> info = os.stat(r'C:\temp\spam.txt')

>>> info

nt.stat_result(st_mode=33206, st _ino=0, st_dev=0, st_nlink=0, st uid=0, st_gid=0,
st_size=18, st_atime=1267645806, st _mtime=1267646072, st_ctime=1267645806)

>>> info.st_mode, info.st_size # via named-tuple item attr names
(33206, 18)

>>> import stat

>>> info[stat.ST_MODE], info[stat.ST_SIZE] # via stat module presets
(33206, 18)

>>> stat.S_ISDIR(info.st_mode), stat.S_ISREG(info.st_mode)

(False, True)

The os.stat call returns a tuple of values (really, in 3.X a special kind of tuple with
named items) giving low-level information about the named file, and the stat module
exports constants and functions for querying this information in a portable way. For
instance, indexing an os.stat result on offset stat.ST_SIZE returns the file’s size, and
calling stat.S_ISDIR with the mode item from an os. stat result checks whether the file
is a directory. As shown earlier, though, both of these operations are available in the
os.path module, too, so it’s rarely necessary to use os.stat except for low-level file
queries:
>>> path = r'C:\temp\spam.txt'

>>> os.path.isdir(path), os.path.isfile(path), os.path.getsize(path)
(False, True, 18)

File Scanners

Before we leave our file tools survey, it’s time for something that performs a more
tangible task and illustrates some of what we’ve learned so far. Unlike some shell-tool
languages, Python doesn’t have an implicit file-scanning loop procedure, butit’s simple
to write a general one that we can reuse for all time. The module in Example 4-1 defines
a general file-scanning routine, which simply applies a passed-in Python function to
each line in an external file.

Example 4-1. PP4E\System\Filetools\scanfile.py

def scanner(name, function):

file = open(name, 'r') # create a file object
while True:
line = file.readline() # call file methods
if not line: break # until end-of-file
function(line) # call a function object

file.close()

The scanner function doesn’t care what line-processing function is passed in, and that
accounts for most of its generality—it is happy to apply any single-argument function
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that exists now or in the future to all of the lines in a text file. If we code this module
and put it in a directory on the module search path, we can use it any time we need to
step through a file line by line. Example 4-2 is a client script that does simple line
translations.

Example 4-2. PP4E\System\Filetools\commands.py

#!/usr/local/bin/python

from sys import argv

from scanfile import scanner

class UnknownCommand(Exception): pass

def processLine(line): # define a function
if line[0] == '*': # applied to each line
print("Ms.", line[1:-1])
elif line[0] == "+':
print("Mr.", line[1:-1]) # strip first and last char: \n
else:
raise UnknownCommand(line) # raise an exception

filename = 'data.txt’
if len(argv) == 2: filename = argv[1] # allow filename cmd arg
scanner (filename, processlLine) # start the scanner

The text file hillbillies.txt contains the following lines:

*Granny
+Jethro
*Elly May
+"Uncle Jed"

and our commands script could be run as follows:

C:\...\PP4E\System\Filetools> python commands.py hillbillies.txt
Ms. Granny

Mr. Jethro

Ms. Elly May

Mr. "Uncle Jed"

This works, but there are a variety of coding alternatives for both files, some of which
may be better than those listed above. For instance, we could also code the command
processor of Example 4-2 in the following way; especially if the number of command
options starts to become large, such a data-driven approach may be more concise
and easier to maintain than a large if statement with essentially redundant actions (if
you ever have to change the way output lines print, you’ll have to change it in only one
place with this form):

commands = {'*': 'Ms.', '+': 'Mr.'} # data is easier to expand than code?

def processLine(line):
try:
print(commands[line[0]], line[1:-1])
except KeyError:
raise UnknownCommand(line)
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The scanner could similarly be improved. As a rule of thumb, we can also usually speed
things up by shifting processing from Python code to built-in tools. For instance, if
we’re concerned with speed, we can probably make our file scanner faster by using the
file’s line iterator to step through the file instead of the manual readline loop in Ex-
ample 4-1 (though you’d have to time this with your Python to be sure):
def scanner(name, function):
for line in open(name, 'r'):
function(line)

# scan line by line
# call a function object

And we can work more magic in Example 4-1 with the iteration tools like the map built-
in function, the list comprehension expression, and the generator expression. Here are
three minimalist’s versions; the for loop is replaced by map or a comprehension, and
we let Python close the file for us when it is garbage collected or the script exits (these
all build a temporary list of results along the way to run through their iterations, but
this overhead is likely trivial for all but the largest of files):

def scanner(name, function):
list(map(function, open(name, 'r')))

def scanner(name, function):
[function(line) for line in open(name, 'r')]

def scanner(name, function):
list(function(line) for line in open(name, 'r'))
File filters

The preceding works as planned, but what if we also want to change a file while scanning
it? Example 4-3 shows two approaches: one uses explicit files, and the other uses the
standard input/output streams to allow for redirection on the command line.

Example 4-3. PP4E\System\Filetools\filters.py

import sys
def filter files(name, function): # filter file through function
input = open(name, 'r') # create file objects
output = open(name + '.out', 'w') # explicit output file too
for line in input:
output.write(function(line)) # write the modified line

input.close()
output.close()

def filter_stream(function):
while True:
line = sys.stdin.readline()
if not line: break
print(function(line), end="")

if name_ =="' main_':
filter stream(lambda line: line)

output has a '".out' suffix

no explicit files
use standard streams
or: input()

or: sys.stdout.write()

copy stdin to stdout if run
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Notice that the newer context managers feature discussed earlier could save us a few
lines here in the file-based filter of Example 4-3, and also guarantee immediate file
closures if the processing function fails with an exception:
def filter files(name, function):
with open(name, 'r') as input, open(name + '.out', 'w') as output:
for line in input:
output.write(function(line)) # write the modified line

And again, file object line iterators could simplify the stream-based filter’s code in this
example as well:

def filter stream(function):

for line in sys.stdin: # read by lines automatically
print(function(line), end="")

Since the standard streams are preopened for us, they’re often easier to use. When run
standalone, it simply parrots stdin to stdout:

C:\...\PP4E\System\Filetools> filters.py < hillbillies.txt

*Granny

+Jethro

*E1ly May

+"Uncle Jed"
But this module is also useful when imported as a library (clients provide the line-
processing function):

>>> from filters import filter files

>>> filter_files('hillbillies.txt', str.upper)

>>> print(open('hillbillies.txt.out').read())

*GRANNY

+JETHRO

*ELLY MAY
+"UNCLE JED"

We'll see files in action often in the remainder of this book, especially in the more
complete and functional system examples of Chapter 6. First though, we turn to tools
for processing our files’ home.

Directory Tools

One of the more common tasks in the shell utilities domain is applying an operation
to a set of files in a directory—a “folder” in Windows-speak. By running a script on a
batch of files, we can automate (that is, script) tasks we might have to otherwise run
repeatedly by hand.

For instance, suppose you need to search all of your Python files in a development
directory for a global variable name (perhaps you’ve forgotten where it is used). There
are many platform-specific ways to do this (e.g., the find and grep commands in Unix),
but Python scripts that accomplish such tasks will work on every platform where Py-
thon works—Windows, Unix, Linux, Macintosh, and just about any other platform
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commonly used today. If you simply copy your script to any machine you wish to use
it on, it will work regardless of which other tools are available there; all you need is
Python. Moreover, coding such tasks in Python also allows you to perform arbitrary
actions along the way—replacements, deletions, and whatever else you can code in the
Python language.

Walking One Directory

The most common way to go about writing such tools is to first grab a list of the names
of the files you wish to process, and then step through that list with a Python for loop
or other iteration tool, processing each file in turn. The trick we need to learn here,
then, is how to get such a directory list within our scripts. For scanning directories there
are at least three options: running shell listing commands with os.popen, matching
filename patterns with glob.glob, and getting directory listings with os.listdir. They
vary in interface, result format, and portability.

Running shell listing commands with os.popen

How did you go about getting directory file listings before you heard of Python? If you’re
new to shell tools programming, the answer may be “Well, I started a Windows file
explorer and clicked on things,” but 'm thinking here in terms of less GUI-oriented
command-line mechanisms.

On Unix, directory listings are usually obtained by typing 1s in a shell; on Windows,
they can be generated with a dir command typed in an MS-DOS console box. Because
Python scripts may use os.popen to run any command line that we can type in a shell,
they are the most general way to grab a directory listing inside a Python program. We
met os.popen in the prior chapters; it runs a shell command string and gives us a file
object from which we can read the command’s output. To illustrate, let’s first assume
the following directory structures—I have both the usual dir and a Unix-like 1s com-
mand from Cygwin on my Windows laptop:

c:\temp> dir /B

parts

PP3E

random.bin

spam.txt

temp.bin

temp.txt

c:\temp> c:\cygwin\bin\ls
PP3E parts random.bin spam.txt temp.bin temp.txt

c:\temp> c:\cygwin\bin\ls parts
part0001 part0002 part0003 part0004

The parts and PP3E names are a nested subdirectory in C:\temp here (the latter is a copy
of the prior edition’s examples tree, which I used occasionally in this text). Now, as
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we've seen, scripts can grab a listing of file and directory names at this level by simply
spawning the appropriate platform-specific command line and reading its output (the
text normally thrown up on the console window):

C:\temp> python

>>> import os

>>> os.popen('dir /B').readlines()

['parts\n', 'PP3E\n', 'random.bin\n', 'spam.txt\n', 'temp.bin\n', 'temp.txt\n']

Lines read from a shell command come back with a trailing end-of-line character, but
it’s easy enough to slice it off; the os.popen result also gives us a line iterator just like
normal files:

>>> for line in os.popen('dir /B'):

print(line[:-1])

parts

PP3E

random.bin

spam.txt

temp.bin
temp.txt

>>> lines = [line[:-1] for line in os.popen('dir /B')]

>>> lines

['parts’, 'PP3E', 'random.bin', 'spam.txt', 'temp.bin', 'temp.txt']
For pipe objects, the effect of iterators may be even more useful than simply avoiding
loading the entire result into memory all at once: readlines will always block the caller
until the spawned program is completely finished, whereas the iterator might not.

The dir and 1s commands let us be specific about filename patterns to be matched and
directory names to be listed by using name patterns; again, we’re just running shell
commands here, so anything you can type at a shell prompt goes:

>>> os.popen('dir *.bin /B').readlines()
['random.bin\n', 'temp.bin\n']

>>> os.popen(r'c:\cygwin\bin\ls *.bin').readlines()
['random.bin\n', 'temp.bin\n']

>>> list(os.popen(r'dir parts /B'))
['partoooi\n', 'partooo2\n', 'part0003\n', 'part0004\n']

>>> [fname for fname in os.popen(r'c:\cygwin\bin\ls parts')]
['partoooi\n', 'partooo2\n', 'part0003\n', 'part0004\n']

These calls use general tools and work as advertised. As I noted earlier, though, the
downsides of os.popen are that it requires using a platform-specific shell command and
it incurs a performance hit to start up an independent program. In fact, different listing
tools may sometimes produce different results:

>>> list(os.popen(r'dir parts\part* /B'))
['partoooi\n', 'partooo2\n', 'part0003\n', 'part0004\n']
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>>>
>>> list(os.popen(r'c:\cygwin\bin\ls parts/part*'))
['parts/partoooi\n', 'parts/partooo2\n', 'parts/part0003\n', 'parts/part0004\n']

The next two alternative techniques do better on both counts.

The glob module

The term globbing comes from the * wildcard character in filename patterns; per com-
puting folklore, a * matches a “glob” of characters. In less poetic terms, globbing simply
means collecting the names of all entries in a directory—files and subdirectories—
whose names match a given filename pattern. In Unix shells, globbing expands filename
patterns within a command line into all matching filenames before the command is
ever run. In Python, we can do something similar by calling the glob.glob built-in—a
tool that accepts a filename pattern to expand, and returns a list (not a generator) of
matching file names:

>>> import glob

>>> glob.glob('*")

['parts', 'PP3E', 'random.bin', 'spam.txt', 'temp.bin', 'temp.txt']

>>> glob.glob('*.bin")
['random.bin', "temp.bin']

>>> glob.glob('parts")
['parts']

>>> glob.glob('parts/*")
['parts\\partooo1', 'parts\\partooo2', 'parts\\parto0oo3', 'parts\\parto0os']

>>> glob.glob('parts\part*')
['parts\\partooo1', 'parts\\partooo2', 'parts\\parto0oo3', 'parts\\partooos']

The glob call accepts the usual filename pattern syntax used in shells: ? means any one
character, * means any number of characters, and [] is a character selection set.¥ The
pattern should include a directory path if you wish to glob in something other than the
current working directory, and the module accepts either Unix or DOS-style directory
separators (/ or \). This call is implemented without spawning a shell command (it uses
o0s.listdir, described in the next section) and so is likely to be faster and more portable
and uniform across all Python platforms than the os.popen schemes shown earlier.

Technically speaking, glob is a bit more powerful than described so far. In fact, using
it to list files in one directory is just one use of its pattern-matching skills. For instance,
it can also be used to collect matching names across multiple directories, simply because
each level in a passed-in directory path can be a pattern too:

>>> for path in glob.glob(r'PP3E\Examples\PP3E\*\s*.py'): print(path)

1 In fact, glob just uses the standard fnmatch module to match name patterns; see the fnmatch description in
Chapter 6’s find module example for more details.
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PP3E\Examples\PP3E\Lang\summer-alt.py
PP3E\Examples\PP3E\Lang\summer.py
PP3E\Examples\PP3E\PyTools\search_all.py

Here, we get back filenames from two different directories that match the s*. py pattern;
because the directory name preceding this is a * wildcard, Python collects all possible
ways to reach the base filenames. Using os.popen to spawn shell commands achieves
the same effect, but only if the underlying shell or listing command does, too, and with
possibly different result formats across tools and platforms.

The os.listdir call

The os module’s listdir call provides yet another way to collect filenames in a Python
list. It takes a simple directory name string, not a filename pattern, and returns a list
containing the names of all entries in that directory—both simple files and nested
directories—for use in the calling script:

>>> import os

>>> os.listdir('.")

['parts', 'PP3E', 'random.bin', 'spam.txt', 'temp.bin', 'temp.txt']

>>>

>>> os.listdir(os.curdir)

['parts', 'PP3E', 'random.bin', 'spam.txt', 'temp.bin', 'temp.txt']

>>>

>>> os.listdir('parts"')

['partooo1’, 'partooo2', 'part0003', 'part0004']

This, too, is done without resorting to shell commands and so is both fast and portable

to all major Python platforms. The result is not in any particular order across platforms

(but can be sorted with the list sort method or sorted built-in function); returns base
[l

filenames without their directory path prefixes; does not include names “.” or “..” if
present; and includes names of both files and directories at the listed level.

To compare all three listing techniques, let’s run them here side by side on an explicit
directory. They differ in some ways but are mostly just variations on a theme for this
task—os.popen returns end-of-lines and may sort filenames on some platforms,
glob.glob accepts a pattern and returns filenames with directory prefixes, and os.1list
dir takes a simple directory name and returns names without directory prefixes:

>>> os.popen('dir /b parts').readlines()
['partoooi\n', 'partooo2\n', 'partooo3\n', 'part0004\n']

>>> glob.glob(r'parts\*')
['parts\\partooo1', 'parts\\partoooz', 'parts\\partooo3', 'parts\\partooos']

>>> os.listdir('parts')
['partooo1', 'parto002', 'part0003', 'parto004']

Of these three, glob and listdir are generally better options if you care about script
portability and result uniformity, and listdir seems fastest in recent Python releases
(but gauge its performance yourself—implementations may change over time).
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Splitting and joining listing results

In the last example, I pointed out that glob returns names with directory paths, whereas
listdir gives raw base filenames. For convenient processing, scripts often need to split
glob results into base files or expand listdir results into full paths. Such translations
are easy if we let the os.path module do all the work for us. For example, a script that
intends to copy all files elsewhere will typically need to first split off the base filenames
from glob results so that it can add different directory names on the front:
>>> dirname = r'C:\temp\parts'
>>>
>>> import glob
>>> for file in glob.glob(dirname + '/*'):
head, tail = os.path.split(file)
print(head, tail, '=>', ('C:\\Other\\' + tail))

C:\temp\parts partooo1 => C:\Other\partooo1i
C:\temp\parts part0002 => C:\Other\part0002
C:\temp\parts part0003 => C:\Other\part0003
C:\temp\parts partooo4 => C:\Other\partooo4

Here, the names after the => represent names that files might be moved to. Conversely,
a script that means to process all files in a different directory than the one it runs in will
probably need to prepend listdir results with the target directory name before passing
filenames on to other tools:

>>> import os

>>> for file in os.listdir(dirname):
print(dirname, file, '=>', os.path.join(dirname, file))

C:\temp\parts partooo1 => C:\temp\parts\partooo1
C:\temp\parts part0o002 => C:\temp\parts\parto0o2
C:\temp\parts parto003 => C:\temp\parts\partooo3
C:\temp\parts partooo4 => C:\temp\parts\partooo4

When you begin writing realistic directory processing tools of the sort we’ll develop in
Chapter 6, you'll find these calls to be almost habit.

Walking Directory Trees

You may have noticed that almost all of the techniques in this section so far return the
names of files in only a single directory (globbing with more involved patterns is the
only exception). That’s fine for many tasks, but what if you want to apply an operation
to every file in every directory and subdirectory in an entire directory tree?

For instance, suppose again that we need to find every occurrence of a global name in
our Python scripts. This time, though, our scripts are arranged into a module pack-
age: a directory with nested subdirectories, which may have subdirectories of their own.
We could rerun our hypothetical single-directory searcher manually in every directory
in the tree, but that’s tedious, error prone, and just plain not fun.
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Luckily, in Python it’s almost as easy to process a directory tree as it is to inspect a single
directory. We can either write a recursive routine to traverse the tree, or use a tree-
walker utility built into the os module. Such tools can be used to search, copy, compare,
and otherwise process arbitrary directory trees on any platform that Python runs on
(and that’s just about everywhere).

The os.walk visitor

To make it easy to apply an operation to all files in a complete directory tree, Python
comes with a utility that scans trees for us and runs code we provide at every directory
along the way: the os.walk function is called with a directory root name and automat-
ically walks the entire tree at root and below.

Operationally, os.walk is a generator function—at each directory in the tree, it yields a
three-item tuple, containing the name of the current directory as well as lists of both
all the files and all the subdirectories in the current directory. Because it’s a generator,
its walk is usually run by a for loop (or other iteration tool); on each iteration, the
walker advances to the next subdirectory, and the loop runs its code for the next level
of the tree (for instance, opening and searching all the files at that level).

That description might sound complex the first time you hear it, but os.walk is fairly
straightforward once you get the hang of it. In the following, for example, the loop
body’s code is run for each directory in the tree rooted at the current working directory
(.). Along the way, the loop simply prints the directory name and all the files at the
current level after prepending the directory name. It’s simpler in Python than in English
(I removed the PP3E subdirectory for this test to keep the output short):

>>> import os

>>> for (dirname, subshere, fileshere) in os.walk('.'):
print('[' + dirname + ']")
for fname in fileshere:

print(os.path.join(dirname, fname)) # handle one file

[.]

.\random.bin

.\spam.txt

.\temp.bin

\temp.txt

[.\parts]

.\parts\partooo1

.\parts\partooo2

.\parts\partooo3

.\parts\partooo4

In other words, we’ve coded our own custom and easily changed recursive directory
listing tool in Python. Because this may be something we would like to tweak and reuse
elsewhere, let’s make it permanently available in a module file, as shown in Exam-
ple 4-4, now that we’ve worked out the details interactively.
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Example 4-4. PP4E\System\Filetools\lister_walk.py

"list file tree with os.walk"

import sys, os

def lister(root): # for a root dir
for (thisdir, subshere, fileshere) in os.walk(root): # generate dirs in tree
print('[" + thisdir + ']")
for fname in fileshere: # print files in this dir
path = os.path.join(thisdir, fname) # add dir name prefix
print(path)
if _name__ == '_main__':
lister(sys.argv[1]) # dir name in cmdline

When packaged this way, the code can also be run from a shell command line. Here it
is being launched with the root directory to be listed passed in as a command-line
argument:

C:\...\PP4E\System\Filetools> python lister walk.py C:\temp\test
[C:\temp\test]
C:\temp\test\random.bin
C:\temp\test\spam.txt
C:\temp\test\temp.bin
C:\temp\test\temp.txt
[C:\temp\test\parts]
C:\temp\test\parts\partooo1i
C:\temp\test\parts\part0002
C:\temp\test\parts\partooo3
C:\temp\test\parts\partooo4

Here’s a more involved example of os.walk in action. Suppose you have a directory tree
of files and you want to find all Python source files within it that reference the mime
types module we’ll study in Chapter 6. The following is one (albeit hardcoded and
overly specific) way to accomplish this task:

>>> import os
>>> matches = []
>>> for (dirname, dirshere, fileshere) in os.walk(r'C:\temp\PP3E\Examples'):
for filename in fileshere:
if filename.endswith('.py'):
pathname = os.path.join(dirname, filename)
if 'mimetypes' in open(pathname).read():
matches.append(pathname)

>>> for name in matches: print(name)

C:\temp\PP3E\Examples\PP3E\Internet\Email\mailtools\mailParser.py
C:\temp\PP3E\Examples\PP3E\Internet\Email\mailtools\mailSender.py
C:\temp\PP3E\Examples\PP3E\Internet\Ftp\mirror\downloadflat.py
C:\temp\PP3E\Examples\PP3E\Internet\Ftp\mirror\downloadflat_modular.py
C:\temp\PP3E\Examples\PP3E\Internet\Ftp\mirror\ftptools.py
C:\temp\PP3E\Examples\PP3E\Internet\Ftp\mirror\uploadflat.py
C:\temp\PP3E\Examples\PP3E\System\Media\playfile.py
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This code loops through all the files at each level, looking for files with .py at the end
of their names and which contain the search string. When a match is found, its full
name is appended to the results list object; alternatively, we could also simply build a
list of all .py files and search each in a for loop after the walk. Since we’re going to code
much more general solution to this type of problem in Chapter 6, though, we’ll let this
stand for now.

If you want to see what’s really going on in the os.walk generator, call its __ next
method (or equivalently, pass it to the next built-in function) manually a few times,
just as the for loop does automatically; each time, you advance to the next subdirectory
in the tree:

>>> gen = os.walk(r'C:\temp\test')

>>> gen.__next__ ()

("C:\\temp\\test', ['parts'], ['random.bin', 'spam.txt', 'temp.bin', 'temp.txt'])

>>> gen.__next_ ()

("C:\\temp\\test\\parts', [], ['partooo1', 'part0002', 'part0003', 'part0004'])

>>> gen.__next_ ()

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
StopIteration

The library manual documents os.walk further than we will here. For instance, it sup-
ports bottom-up instead of top-down walks with its optional topdown=False argument,
and callers may prune tree branches by deleting names in the subdirectories lists of the
yielded tuples.

Internally, the os.walk call generates filename lists at each level with the os.1listdir call
we met earlier, which collects both file and directory names in no particular order and
returns them without their directory paths; os.walk segregates this list into subdirec-
tories and files (technically, nondirectories) before yielding a result. Also note that
walk uses the very same subdirectories list it yields to callers in order to later descend
into subdirectories. Because lists are mutable objects that can be changed in place, if
your code modifies the yielded subdirectory names list, it will impact what walk does
next. For example, deleting directory names will prune traversal branches, and sorting
the list will order the walk.

Recursive os.listdir traversals

The os.walk tool does the work of tree traversals for us; we simply provide loop code
with task-specific logic. However, it’s sometimes more flexible and hardly any more
work to do the walking ourselves. The following script recodes the directory listing
script with a manual recursive traversal function (a function that calls itself to repeat
its actions). The mylister function in Example 4-5 is almost the same as lister in
Example 4-4 but calls os.1listdir to generate file paths manually and calls itself recur-
sively to descend into subdirectories.
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Example 4-5. PP4E\System\Filetools\lister_recur.py

# list files in dir tree by recursion
import sys, os

def mylister(currdir):

print('[' + currdir + ']")
for file in os.listdir(currdir): # list files here
path = os.path.join(currdir, file) # add dir path back
if not os.path.isdir(path):
print(path)
else:
mylister(path) # recur into subdirs
if name_ =="' main_':
mylister(sys.argv[1]) # dir name in cmdline

As usual, this file can be both imported and called or run as a script, though the fact
that its result is printed text makes it less useful as an imported component unless its
output stream is captured by another program.

When run as a script, this file’s output is equivalent to that of Example 4-4, but not
identical—unlike the os.walk version, our recursive walker here doesn’t order the walk
to visit files before stepping into subdirectories. It could by looping through the file-
names list twice (selecting files first), but as coded, the order is dependent on os.1list
dir results. For most use cases, the walk order would be irrelevant:

C:\...\PP4E\System\Filetools> python lister recur.py C:\temp\test

[C:\temp\test]

[C:\temp\test\parts]

C:\temp\test\parts\partooo1i

C:\temp\test\parts\part0002

C:\temp\test\parts\partooo3

C:\temp\test\parts\partooo4

C:\temp\test\random.bin

C:\temp\test\spam.txt

C:\temp\test\temp.bin

C:\temp\test\temp.txt

We’ll make better use of most of this section’s techniques in later examples in Chap-
ter 6 and in this book at large. For example, scripts for copying and comparing directory
trees use the tree-walker techniques introduced here. Watch for these tools in action
along the way. We’ll also code a find utility in Chapter 6 that combines the tree traversal
of os.walk with the filename pattern expansion of glob.glob.

Handling Unicode Filenames in 3.X: listdir, walk, glob

Because all normal strings are Unicode in Python 3.X, the directory and file names
generated by os.listdir, os.walk, and glob.glob so far in this chapter are technically
Unicode strings. This can have some ramifications if your directories contain unusual
names that might not decode properly.

172 | Chapter4: File and Directory Tools



Technically, because filenames may contain arbitrary text, the os.listdir works in two
modes in 3.X: given a bytes argument, this function will return filenames as encoded
byte strings; given a normal str string argument, it instead returns filenames as Unicode
strings, decoded per the filesystem’s encoding scheme:

C:\...\PP4E\System\Filetools> python

>>> import os

>>> os.listdir('.")[:4]

['bigext-tree.py', 'bigpy-dir.py', 'bigpy-path.py', 'bigpy-tree.py']

>>> os.listdir(b'.")[:4]

[b'bigext-tree.py', b'bigpy-dir.py', b'bigpy-path.py', b'bigpy-tree.py']
The byte string version can be used if undecodable file names may be present. Because
os.walk and glob.glob both work by calling os.listdir internally, they inherit this
behavior by proxy. The os.walk tree walker, for example, calls os.listdir at each di-
rectory level; passing byte string arguments suppresses decoding and returns byte string
results:

>>> for (dir, subs, files) in os.walk('..'): print(dir)

..\Environment
..\Filetools
..\Processes

>>> for (dir, subs, files) in os.walk(b'..'): print(dir)

b'..'
b'..\\Environment'
b'..\\Filetools'
b'..\\Processes'

The glob.glob tool similarly calls os.listdir internally before applying name patterns,
and so also returns undecoded byte string names for byte string arguments:

>>> glob.glob('.\*')[:3]

[".\\bigext-out.txt', '.\\bigext-tree.py', '.\\bigpy-dir.py']

>>>

>>> glob.glob(b'.\*")[:3]

[b'.\\bigext-out.txt', b'.\\bigext-tree.py', b'.\\bigpy-dir.py']

Given a normal string name (as a command-line argument, for example), you can force
the issue by converting to byte strings with manual encoding to suppress decoding:

>>> name =
>>> os.listdir(name.encode())[:4]
[b'bigext-out.txt', b'bigext-tree.py', b'bigpy-dir.py', b'bigpy-path.py']

The upshot is that if your directories may contain names which cannot be decoded
according to the underlying platform’s Unicode encoding scheme, you may need to
pass byte strings to these tools to avoid Unicode encoding errors. You’ll get byte strings

back, which may be less readable if printed, but you’ll avoid errors while traversing
directories and files.
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This might be especially useful on systems that use simple encodings such as ASCII or
Latin-1, but may contain files with arbitrarily encoded names from cross-machine cop-
ies, the Web, and so on. Depending upon context, exception handlers may be used to
suppress some types of encoding errors as well.

We'll see an example of how this can matter in the first section of Chapter 6, where an
undecodable directory name generates an error if printed during a full disk scan (al-
though that specific error seems more related to printing than to decoding in general).

Note that the basic open built-in function allows the name of the file being opened to
be passed as either Unicode str or raw bytes, too, though this is used only to name the
file initially; the additional mode argument determines whether the file’s content is
handled in text or binary modes. Passing a byte string filename allows you to name files
with arbitrarily encoded names.

Unicode policies: File content versus file names

In fact, it’s important to keep in mind that there are two different Unicode concepts
related to files: the encoding of file content and the encoding of file name. Python pro-
vides your platform’s defaults for these settings in two different attributes; on
Windows 7:

>>> import sys

>>> sys.getdefaultencoding() # file content encoding, platform default
'utf-8'

>>> sys.getfilesystemencoding() # file name encoding, platform scheme
"‘mbcs’

These settings allow you to be explicit when needed—the content encoding is used
when data is read and written to the file, and the name encoding is used when dealing
with names prior to transferring data. In addition, using bytes for file name tools may
work around incompatibilities with the underlying file system’s scheme, and opening
files in binary mode can suppress Unicode decoding errors for content.

As we’ve seen, though, opening text files in binary mode may also mean that the raw
and still-encoded text will not match search strings as expected: search strings must
also be byte strings encoded per a specific and possibly incompatible encoding scheme.
In fact, this approach essentially mimics the behavior of text files in Python 2.X, and
underscores why elevating Unicode in 3.X is generally desirable—such text files some-
times may appear to work even though they probably shouldn’t. On the other hand,
opening text in binary mode to suppress Unicode content decoding and avoid decoding
errors might still be useful if you do not wish to skip undecodable files and content is
largely irrelevant.
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As arule of thumb, you should try to always provide an encoding name for text content
if it might be outside the platform default, and you should rely on the default Unicode
APT for file names in most cases. Again, see Python’s manuals for more on the Unicode
file name story than we have space to cover fully here, and see Learning Python, Fourth
Edition, for more on Unicode in general.

In Chapter 6, we’re going to put the tools we met in this chapter to realistic use. For
example, we’ll apply file and directory tools to implement file splitters, testing systems,
directory copies and compares, and a variety of utilities based on tree walking. We’ll
find that Python’s directory tools we met here have an enabling quality that allows us
to automate a large set of real-world tasks. First, though, Chapter 5 concludes our basic
tool survey, by exploring another system topic that tends to weave its way into a wide
variety of application domains—parallel processing in Python.
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CHAPTER 5
Parallel System Tools

“Telling the Monkeys What to Do”

Most computers spend a lot of time doing nothing. If you start a system monitor tool
and watch the CPU utilization, you’ll see what I mean—it’s rare to see one hit 100
percent, even when you are running multiple programs.” There are just too many delays
built into software: disk accesses, network traffic, database queries, waiting for users
to click a button, and so on. In fact, the majority of a modern CPU’s capacity is often
spent in an idle state; faster chips help speed up performance demand peaks, but much
of their power can go largely unused.

Early on in computing, programmers realized that they could tap into such unused
processing power by running more than one program at the same time. By dividing the
CPU’s attention among a set of tasks, its capacity need not go to waste while any given
task is waiting for an external event to occur. The technique is usually called parallel
processing (and sometimes “multiprocessing” or even “multitasking”) because many
tasks seem to be performed at once, overlapping and parallel in time. It’s at the heart
of modern operating systems, and it gave rise to the notion of multiple-active-window
computer interfaces we’ve all come to take for granted. Even within a single program,
dividing processing into tasks that run in parallel can make the overall system faster,
at least as measured by the clock on your wall.

Just as important is that modern software systems are expected to be responsive to
users regardless of the amount of work they must perform behind the scenes. It’s usually
unacceptable for a program to stall while busy carrying out a request. Consider an
email-browser user interface, for example; when asked to fetch email from a server, the
program must download text from a server over a network. If you have enough email
or a slow enough Internet link, that step alone can take minutes to finish. But while the

* To watch on Windows, click the Start button, select All Programs > Accessories > System Tools > Resource
Monitor, and monitor CPU/Processor usage (Task Manager’s Performance tab may give similar results). The
graph rarely climbed above single-digit percentages on my laptop machine while writing this footnote (at
least until I typed while True: pass in a Python interactive session window...).
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download task proceeds, the program as a whole shouldn’t stall—it still must respond
to screen redraws, mouse clicks, and so on.

Parallel processing comes to the rescue here, too. By performing such long-running
tasks in parallel with the rest of the program, the system at large can remain responsive
no matter how busy some of its parts may be. Moreover, the parallel processing model
is a natural fit for structuring such programs and others; some tasks are more easily
conceptualized and coded as components running as independent, parallel entities.

There are two fundamental ways to get tasks running at the same time in Python—
process forks and spawned threads. Functionally, both rely on underlying operating
system services to run bits of Python code in parallel. Procedurally, they are very dif-
ferent in terms of interface, portability, and communication. For instance, at this writ-
ing direct process forks are not supported on Windows under standard Python (though
they are under Cygwin Python on Windows).

By contrast, Python’s thread support works on all major platforms. Moreover, the
os.spawn family of calls provides additional ways to launch programs in a platform-
neutral way that is similar to forks, and the os.popen and os.system calls and
subprocess module we studied in Chapters 2 and 3 can be used to portably spawn
programs with shell commands. The newer multiprocessing module offers additional
ways to run processes portably in many contexts.

In this chapter, which is a continuation of our look at system interfaces available to
Python programmers, we explore Python’s built-in tools for starting tasks in parallel,
as well as communicating with those tasks. In some sense, we’ve already begun doing
so—os.system, os.popen, and subprocess, which we learned and applied over the last
three chapters, are a fairly portable way to spawn and speak with command-line pro-
grams, too. We won’t repeat full coverage of those tools here.

Instead, our emphasis in this chapter is on introducing more direct techniques—forks,
threads, pipes, signals, sockets, and other launching techniques—and on using Py-
thon’s built-in tools that support them, such as the os.fork call and the threading,
queue, and multiprocessing modules. In the next chapter (and in the remainder of this
book), we use these techniques in more realistic programs, so be sure you understand
the basics here before flipping ahead.

One note up front: although the process, thread, and IPC mechanisms we will explore
in this chapter are the primary parallel processing tools in Python scripts, the third party
domain offers additional options which may serve more advanced or specialized roles.
As just one example, the MPI for Python system allows Python scripts to also employ
the Message Passing Interface (MPI) standard, allowing Python programs to exploit
multiple processors in various ways (see the Web for details). While such specific ex-
tensions are beyond our scope in this book, the fundamentals of multiprocessing that
we will explore here should apply to more advanced techniques you may encounter in
your parallel futures.
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Forking Processes

Forked processes are a traditional way to structure parallel tasks, and they are a fun-
damental part of the Unix tool set. Forking is a straightforward way to start an inde-
pendent program, whether it is different from the calling program or not. Forking is
based on the notion of copying programs: when a program calls the fork routine, the
operating system makes a new copy of that program and its process in memory and
starts running that copy in parallel with the original. Some systems don’t really copy
the original program (it’s an expensive operation), but the new copy works as if it were
a literal copy.

After a fork operation, the original copy of the program is called the parent process,
and the copy created by os. fork is called the child process. In general, parents can make
any number of children, and children can create child processes of their own; all forked
processes run independently and in parallel under the operating system’s control, and
children may continue to run after their parent exits.

This is probably simpler in practice than in theory, though. The Python script in Ex-
ample 5-1 forks new child processes until you type the letter g at the console.

Example 5-1. PP4E\System\Processes\fork1.py

(PR

"forks child processes until you type 'q
import os

def child():
print('Hello from child', os.getpid())
os._exit(0) # else goes back to parent loop

def parent():
while True:
newpid = os.fork()
if newpid == 0:
child()
else:
print('Hello from parent', os.getpid(), newpid)
if input() == 'q': break

parent()

Python’s process forking tools, available in the os module, are simply thin wrappers
over standard forking calls in the system library also used by C language programs. To
start a new, parallel process, call the os.fork built-in function. Because this function
generates a copy of the calling program, it returns a different value in each copy: zero
in the child process and the process ID of the new child in the parent.
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Programs generally test this result to begin different processing in the child only; this
script, for instance, runs the child function in child processes only.*

Because forking is ingrained in the Unix programming model, this script works well on
Unix, Linux, and modern Macs. Unfortunately, this script won’t work on the standard
version of Python for Windows today, because fork is too much at odds with the Win-
dows model. Python scripts can always spawn threads on Windows, and the multi
processing module described later in this chapter provides an alternative for running
processes portably, which can obviate the need for process forks on Windows in con-
texts that conform to its constraints (albeit at some potential cost in low-level control).

The script in Example 5-1 does work on Windows, however, if you use the Python
shipped with the Cygwin system (or build one of your own from source-code with
Cygwin’s libraries). Cygwin is a free, open source system that provides full Unix-like
functionality for Windows (and is described further in “More on Cygwin Python for
Windows” on page 185). You can fork with Python on Windows under Cygwin, even
though its behavior is not exactly the same as true Unix forks. Because it’s close enough
for this book’s examples, though, let’s use it to run our script live:
[C:\...\PP4E\System\Processes]$ python forki.py

Hello from parent 7296 7920
Hello from child 7920

Hello from parent 7296 3988
Hello from child 3988

Hello from parent 7296 6796
Hello from child 6796

q

These messages represent three forked child processes; the unique identifiers of all the
processes involved are fetched and displayed with the os.getpid call. A subtle point:
the child process function is also careful to exit explicitly with an os._exit call. We’ll
discuss this call in more detail later in this chapter, but if it’s not made, the child process
would live on after the child function returns (remember, it’s just a copy of the original
process). The net effect is that the child would go back to the loop in parent and start
forking children of its own (i.e., the parent would have grandchildren). If you delete
the exit call and rerun, you’ll likely have to type more than one q to stop, because
multiple processes are running in the parent function.

In Example 5-1, each process exits very soon after it starts, so there’s little overlap in
time. Let’s do something slightly more sophisticated to better illustrate multiple forked
processes running in parallel. Example 5-2 starts up 5 copies of itself, each copy count-
ing up to 5 with a one-second delay between iterations. The time.sleep standard library

t At least in the current Python implementation, calling os. fork in a Python script actually copies the Python
interpreter process (if you look at your process list, you’ll see two Python entries after a fork). But since the
Python interpreter records everything about your running script, it’s OK to think of fork as copying your
program directly. It really will if Python scripts are ever compiled to binary machine code.
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call simply pauses the calling process for a number of seconds (you can pass a floating-
point value to pause for fractions of seconds).

Example 5-2. PP4E\System\Processes\fork-count.py

nnn

fork basics: start 5 copies of this program running in parallel with
the original; each copy counts up to 5 on the same stdout stream--forks
copy process memory, including file descriptors; fork doesn't currently
work on Windows without Cygwin: use os.spawnv or multiprocessing on
Windows instead; spawnv is roughly like a fork+exec combination;

nnn

import os, time

def counter(count): # run in new process
for i in range(count):
time.sleep(1) # simulate real work

print('[%s] => %s' % (os.getpid(), 1))

for i in range(5):
pid = os.fork()

if pid != 0:
print('Process %d spawned' % pid) # in parent: continue
else:
counter(5) # else in child/new process
os._exit(0) # run function and exit
print('Main process exiting.') # parent need not wait

When run, this script starts 5 processes immediately and exits. All 5 forked processes
check in with their first count display one second later and every second thereafter.
Notice that child processes continue to run, even if the parent process that created them
terminates:

[C:\...\PP4E\System\Processes]$ python fork-count.py
Process 4556 spawned
Process 3724 spawned
Process 6360 spawned
Process 6476 spawned
Process 6684 spawned
Main process exiting.
[4556] => 0
[3724] =>
[6360] =>
[6476] =>
[6684] =>
[4556] =>
[3724] =>
[6360] =>
]
]
]
]

[6476] =>
[6684] =>
[4556] =>
[3724] =>
[6360] =>

NNNRPRRPRPRPPREPROOODO
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[6476] => 2
[6684] => 2
...more output omitted...

The output of all of these processes shows up on the same screen, because all of them
share the standard output stream (and a system prompt may show up along the way,
too). Technically, a forked process gets a copy of the original process’s global memory,
including open file descriptors. Because of that, global objects like files start out with
the same values in a child process, so all the processes here are tied to the same single
stream. But it’s important to remember that global memory is copied, not shared; if a
child process changes a global object, it changes only its own copy. (As we’ll see, this
works differently in threads, the topic of the next section.)

The fork/exec Combination

In Examples 5-1 and 5-2, child processes simply ran a function within the Python pro-
gram and then exited. On Unix-like platforms, forks are often the basis of starting
independently running programs that are completely different from the program that
performed the fork call. For instance, Example 5-3 forks new processes until we type
q again, but child processes run a brand-new program instead of calling a function in
the same file.

Example 5-3. PP4E\System\Processes\fork-exec.py

"starts programs until you type 'q

import os
parm = 0
while True:
parm += 1
pid = os.fork()
if pid == o: # copy process
os.execlp('python', 'python', 'child.py', str(parm)) # overlay program
assert False, 'error starting program’ # shouldn't return
else:

print('Child is', pid)
if input() == 'q': break

If you’ve done much Unix development, the fork/exec combination will probably look
familiar. The main thing to notice is the os.execlp call in this code. In a nutshell, this
call replaces (overlays) the program running in the current process with a brand new
program. Because of that, the combination of os.fork and os.execlp means start a new
process and run a new program in that process—in other words, launch a new program
in parallel with the original program.
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os.exec call formats

The arguments to os.execlp specify the program to be run by giving command-line
arguments used to start the program (i.e., what Python scripts know as sys.argv). If
successful, the new program begins running and the call to os. execlp itself never returns
(since the original program has been replaced, there’s really nothing to return to). If
the call does return, an error has occurred, so we code an assert after it that will always
raise an exception if reached.

There are a handful of os.exec variants in the Python standard library; some allow us
to configure environment variables for the new program, pass command-line argu-
ments in different forms, and so on. All are available on both Unix and Windows, and
they replace the calling program (i.e., the Python interpreter). exec comes in eight fla-
vors, which can be a bit confusing unless you generalize:

os.execv(program, commandlinesequence)
The basic “v” exec form is passed an executable program’s name, along with a list
or tuple of command-line argument strings used to run the executable (that is, the
words you would normally type in a shell to start a program).

os.execl(program, cmdargi, cmdarg2,... cmdargN)
The basic “1” exec form is passed an executable’s name, followed by one or more
command-line arguments passed as individual function arguments. This is the
same as os.execv(program, (cmdargl, cmdarg2,...)).

os.execlp

0S.execvp
Adding the letter p to the execv and execl names means that Python will locate the
executable’s directory using your system search-path setting (i.e., PATH).

os.execle

0s.execve
Adding a letter e to the execv and execl names means an extra, last argument is a
dictionary containing shell environment variables to send to the program.

0s.execvpe

os.execlpe
Adding the letters p and e to the basic exec names means to use the search path
and to accept a shell environment settings dictionary.

So when the script in Example 5-3 calls os.execlp, individually passed parameters
specify a command line for the program to be run on, and the word python maps to an
executable file according to the underlying system search-path setting environment
variable (PATH). It’s as if we were running a command of the form python child.py 1
in a shell, but with a different command-line argument on the end each time.
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Spawned child program

Just as when typed at a shell, the string of arguments passed to os.execlp by the fork-
exec script in Example 5-3 starts another Python program file, as shown in Example 5-4.

Example 5-4. PP4E\System\Processes\child.py

import os, sys
print('Hello from child', os.getpid(), sys.argv[1])

Here is this code in action on Linux. It doesn’t look much different from the original
forkl.py, butit’s really running a new program in each forked process. More observant
readers may notice that the child process ID displayed is the same in the parent program
and the launched child.py program; os.execlp simply overlays a program in the same
process:

[C:\...\PP4E\System\Processes]$ python fork-exec.py

Child is 4556
Hello from child 4556 1

Child is 5920
Hello from child 5920 2

Child is 316
Hello from child 316 3
q

There are other ways to start up programs in Python besides the fork/exec combination.
For example, the os.system and os.popen calls and subprocess module which we ex-
plored in Chapters 2 and 3 allow us to spawn shell commands. And the os. spawnv call
and multiprocessing module, which we’ll meet later in this chapter, allow us to start
independent programs and processes more portably. In fact, we’ll see later that multi
processing’s process spawning model can be used as a sort of portable replacement for
os.fork in some contexts (albeit a less efficient one) and used in conjunction with the
os.exec* calls shown here to achieve a similar effect in standard Windows Python.

We'll see more process fork examples later in this chapter, especially in the program
exits and process communication sections, so we’ll forego additional examples here.
We'll also discuss additional process topics in later chapters of this book. For instance,
forks are revisited in Chapter 12 to deal with servers and their zombies—dead processes
lurking in system tables after their demise. For now, let’s move on to threads, a subject
which at least some programmers find to be substantially less frightening...
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More on Cygwin Python for Windows

As mentioned, the os. fork call is present in the Cygwin version of Python on Windows.
Even though this call is missing in the standard version of Python for Windows, you
can fork processes on Windows with Python if you install and use Cygwin. However,
the Cygwin fork call is not as efficient and does not work exactly the same as a fork on
true Unix systems.

Cygwin is a free, open source package which includes a library that attempts to provide
a Unix-like API for use on Windows machines, along with a set of command-line tools
that implement a Unix-like environment. It makes it easier to apply Unix skills and
code on Windows computers.

According to its FAQ documentation, though, “Cygwin fork() essentially works like a
noncopy on write version of fork() (like old Unix versions used to do). Because of this
it can be a little slow. In most cases, you are better off using the spawn family of calls
if possible.” Since this book’s fork examples don’t need to care about performance,
Cygwin’s fork suffices.

In addition to the fork call, Cygwin provides other Unix tools that would otherwise not
be available on all flavors of Windows, including os.mkfifo (discussed later in this
chapter). It also comes with a gcc compiler environment for building C extensions for
Python on Windows that will be familiar to Unix developers. As long as you’re willing
to use Cygwin libraries to build your application and power your Python, it’s very close
to Unix on Windows.

Like all third-party libraries, though, Cygwin adds an extra dependency to your sys-
tems. Perhaps more critically, Cygwin currently uses the GNU GPL license, which adds
distribution requirements beyond those of standard Python. Unlike using Python itself,
shipping a program that uses Cygwin libraries may require that your program’s source
code be made freely available (though RedHat offers a “buy-out” option which can
relieve you of this requirement). Note that this is a complex legal issue, and you should
study Cygwin’s license on your own if this may impact your programs. Its license does,
however, impose more constraints than Python’s (Python uses a “BSD”-style license,
not the GPL).

Despite licensing issue, Cygwin still can be a great way to get Unix-like functionality
on Windows without installing a completely different operating system such as
Linux—a more complete but generally more complex option. For more details, see
http://cygwin.com or run a search for Cygwin on the Web.

See also the standard library’s multiprocessing module and os.spawn family of calls,
covered later in this chapter, for alternative way to start parallel tasks and programs on
Unix and Windows that do not require fork and exec calls. To run a simple function
call in parallel on Windows (rather than on an external program), also see the section
on standard library threads later in this chapter. Threads, multiprocessing, and
os.spawn calls work on Windows in standard Python.
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Fourth Edition Update: As 1 was updating this chapter in February 2010, Cygwin’s
official Python was still Python 2.5.2. To get Python 3.1 under Cygwin, it had to be
built from its source code. If this is still required when you read this, make sure you
have gcc and make installed on your Cygwin, then fetch Python’s source code package
from python.org, unpack it, and build Python with the usual commands:

./configure

make

make test
sudo make install

This will install Python as python3. The same procedure works on all Unix-like plat-
forms; on OS X and Cygwin, the executable is called python.exe; elsewhere it’s named
python. You can generally skip the last two of the above steps if you’re willing to run
Python 3.1 out of your own build directory. Be sure to also check if Python 3.X is a
standard Cygwin package by the time you read this; when building from source you
may have to tweak a few files (I had to comment-out a #define in Modules/main.c), but
these are too specific and temporal to get into here.

Threads

Threads are another way to start activities running at the same time. In short, they run
a call to a function (or any other type of callable object) in parallel with the rest of the
program. Threads are sometimes called “lightweight processes,” because they run in
parallel like forked processes, but all of them run within the same single process. While
processes are commonly used to start independent programs, threads are commonly
used for tasks such as nonblocking input calls and long-running tasks in a GUL They
also provide a natural model for algorithms that can be expressed as independently
running tasks. For applications that can benefit from parallel processing, some devel-
opers consider threads to offer a number of advantages:

Performance
Because all threads run within the same process, they don’t generally incur a big
startup cost to copy the process itself. The costs of both copying forked processes
and running threads can vary per platform, but threads are usually considered less
expensive in terms of performance overhead.

Simplicity
To many observers, threads can be noticeably simpler to program, too, especially
when some of the more complex aspects of processes enter the picture (e.g., process
exits, communication schemes, and zombie processes, covered in Chapter 12).

Shared global memory
On a related note, because threads run in a single process, every thread shares the
same global memory space of the process. This provides a natural and easy way
for threads to communicate—by fetching and setting names or objects accessible
to all the threads. To the Python programmer, this means that things like global
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scope variables, passed objects and their attributes, and program-wide interpreter
components such as imported modules are shared among all threads in a program;
if one thread assigns a global variable, for instance, its new value will be seen by
other threads. Some care must be taken to control access to shared items, but to
some this seems generally simpler to use than the process communication tools
necessary for forked processes, which we’ll meet later in this chapter and book
(e.g., pipes, streams, signals, sockets, etc.). Like much in programming, this is not
a universally shared view, however, so you’ll have to weigh the difference for your
programs and platforms yourself.

Portability

Perhaps most important is the fact that threads are more portable than forked
processes. At this writing, os.fork is not supported by the standard version of
Python on Windows, but threads are. If you want to run parallel tasks portably in
a Python script today and you are unwilling or unable to install a Unix-like library
such as Cygwin on Windows, threads may be your best bet. Python’s thread tools
automatically account for any platform-specific thread differences, and they pro-
vide a consistent interface across all operating systems. Having said that, the rela-
tively new multiprocessing module described later in this chapter offers another
answer to the process portability issue in some use cases.

So what’s the catch? There are three potential downsides you should be aware of before
you start spinning your threads:

Function calls versus programs

First of all, threads are not a way—at least, not a direct way—to start up another
program. Rather, threads are designed to run a call to a function (technically, any
callable, including bound and unbound methods) in parallel with the rest of the
program. As we saw in the prior section, by contrast, forked processes can either
call a function or start a new program. Naturally, the threaded function can run
scripts with the exec built-in function and can start new programs with tools such
as os.system, os.popen and the subprocess module, especially if doing so is itself a
long-running task. But fundamentally, threads run in-program functions.

In practice, thisis usually not a limitation. For many applications, parallel functions
are sufficiently powerful. For instance, if you want to implement nonblocking input
and output and avoid blocking a GUI or its users with long-running tasks, threads
do the job; simply spawn a thread to run a function that performs the potentially
long-running task. The rest of the program will continue independently.

Thread synchronization and queues
Secondly, the fact that threads share objects and names in global process memory
is both good news and bad news—it provides a communication mechanism, but
we have to be careful to synchronize a variety of operations. As we’ll see, even
operations such as printing are a potential conflict since there is only one
sys.stdout per process, which is shared by all threads.
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Luckily, the Python queue module, described in this section, makes this simple:
realistic threaded programs are usually structured as one or more producer (a.k.a.
worker) threads that add data to a queue, along with one or more consumer threads
that take the data off the queue and process it. In a typical threaded GUI, for
example, producers may download or compute data and place it on the queue; the
consumer—the main GUI thread—checks the queue for data periodically with a
timer event and displays it in the GUI when it arrives. Because the shared queue is
thread-safe, programs structured this way automatically synchronize much cross-
thread data communication.

The global interpreter lock (GIL)

Finally, as we’ll learn in more detail later in this section, Python’s implementation
of threads means that only one thread is ever really running its Python language
code in the Python virtual machine at any point in time. Python threads are true
operating system threads, but all threads must acquire a single shared lock when
they are ready to run, and each thread may be swapped out after running for a short
period of time (currently, after a set number of virtual machine instructions, though
this implementation may change in Python 3.2).

Because of this structure, the Python language parts of Python threads cannot today
be distributed across multiple CPUs on a multi-CPU computer. To leverage more
than one CPU, you’ll simply need to use process forking, not threads (the amount
and complexity of code required for both are roughly the same). Moreover, the
parts of a thread that perform long-running tasks implemented as C extensions can
run truly independently if they release the GIL to allow the Python code of other
threads to run while their task is in progress. Python code, however, cannot truly
overlap in time.

The advantage of Python’s implementation of threads is performance—when it
was attempted, making the virtual machine truly thread-safe reportedly slowed all
programs by a factor of two on Windows and by an even larger factor on Linux.
Even nonthreaded programs ran at half speed.

Even though the GIL’s multiplexing of Python language code makes Python
threads less useful for leveraging capacity on multiple CPU machines, threads are
still useful as programming tools to implement nonblocking operations, especially
in GUIs. Moreover, the newer multiprocessing module we’ll meet later offers an-
other solution here, too—by providing a portable thread-like API that is imple-
mented with processes, programs can both leverage the simplicity and
programmability of threads and benefit from the scalability of independent pro-
cesses across CPUs.

Despite what you may think after reading the preceding overview, threads are remark-
ably easy to use in Python. In fact, when a program is started it is already running a
thread, usually called the “main thread” of the process. To start new, independent
threads of execution within a process, Python code uses either the low-level _thread
module to run a function call in a spawned thread, or the higher-level threading module
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to manage threads with high-level class-based objects. Both modules also provide tools
for synchronizing access to shared objects with locks.

This book presents both the _thread and threading modules, and its
examples use both interchangeably. Some Python users would recom-

| mend that you always use threading rather than _thread in general. In
fact, the latter was renamed from thread to _thread in 3.X to suggest
such a lesser status for it. Personally, I think that is too extreme (and
this is one reason this book sometimes uses as thread in imports to
retain the original module name). Unless you need the more powerful
tools in threading, the choice is largely arbitrary, and the threading
module’s extra requirements may be unwarranted.

The basic thread module does not impose OOP, and as you’ll see in the
examples of this section, is very straightforward to use. The threading
module may be better for more complex tasks which require per-thread
state retention or joins, but not all threaded programs require its extra
tools, and many use threads in more limited scopes. In fact, this is
roughly the same as comparing the os.walk call and visitor classes we’ll
meet in Chapter 6—both have valid audiences and use cases. The most
general Python rule of thumb applies here as always: keep it simple,
unless it has to be complex.

The _thread Module

Since the basic _thread module is a bit simpler than the more advanced threading
module covered later in this section, let’s look at some of its interfaces first. This module
provides a portable interface to whatever threading system is available in your platform:
its interfaces work the same on Windows, Solaris, SGI, and any system with an installed
pthreads POSIX threads implementation (including Linux and others). Python scripts
that use the Python _thread module work on all of these platforms without changing
their source code.

Basic usage

Let’s start off by experimenting with a script that demonstrates the main thread inter-
faces. The script in Example 5-5 spawns threads until you reply with a g at the console;
it’s similar in spirit to (and a bit simpler than) the script in Example 5-1, but it goes
parallel with threads instead of process forks.

Example 5-5. PP4E\System\Threads\threadl.py

[RRT

"spawn threads until you type 'q
import thread

def child(tid):
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print('Hello from thread', tid)

def parent():

1=0
while True:
i+=1

_thread.start_new_thread(child, (i,))
if input() == 'q': break

parent()

This script really contains only two thread-specific lines: the import of the _thread
module and the thread creation call. To start a thread, we simply call the
_thread.start_new_thread function, no matter what platform we’re programming
on.F This call takes a function (or other callable) object and an arguments tuple and
starts a new thread to execute a call to the passed function with the passed arguments.
It’s almost like Python’s function(*args) call syntax, and similarly accepts an optional
keyword arguments dictionary, too, but in this case the function call begins running in
parallel with the rest of the program.

Operationally speaking, the thread.start_new thread call itself returns immediately
with no useful value, and the thread it spawns silently exits when the function being
run returns (the return value of the threaded function call is simply ignored). Moreover,
if a function run in a thread raises an uncaught exception, a stack trace is printed and
the thread exits, but the rest of the program continues. With the _thread module, the
entire program exits silently on most platforms when the main thread does (though as
we’ll see later, the threading module may require special handling if child threads are
still running).

In practice, though, it’s almost trivial to use threads in a Python script. Let’s run this
program to launch a few threads; we can run it on both Unix-like platforms and Win-
dows this time, because threads are more portable than process forks—here it is
spawning threads on Windows:

C:\...\PP4E\System\Threads> python threadi.py
Hello from thread 1

Hello from thread 2
Hello from thread 3

Hello from thread 4
q

1 The _thread examples in this book now all use start new thread. This call is also available as
thread.start_new for historical reasons, but this synonym may be removed in a future Python release. As of
Python 3.1, both names are still available, but the help documentation for start_new claims that it is obsolete;
in other words, you should probably prefer the other if you care about the future (and this book must!).
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Each message here is printed from a new thread, which exits almost as soon as it is
started.

Other ways to code threads with _thread

Although the preceding script runs a simple function, any callable object may be run in
the thread, because all threads live in the same process. For instance, a thread can also
run a lambda function or bound method of an object (the following code is part of file
thread-alts.py in the book examples package):

import _thread # all 3 print 4294967296

def action(i): # function run in threads
print(i ** 32)

class Power:
def _init (self, i):
self.i = i
def action(self): # bound method run in threads
print(self.i ** 32)

_thread.start_new thread(action, (2,)) # simple function
_thread.start _new thread((lambda: action(2)), ()) # lambda function to defer

obj = Power(2)

_thread.start_new thread(obj.action, ()) # bound method object
As we’ll see in larger examples later in this book, bound methods are especially useful
in this role—because they remember both the method function and instance object,

they also give access to state information and class methods for use within and during
the thread.

More fundamentally, because threads all run in the same process, bound methods run
by threads reference the original in-process instance object, not a copy of it. Hence, any
changes to its state made in a thread will be visible to all threads automatically. More-
over, since bound methods of a class instance pass for callables interchangeably with
simple functions, using them in threads this way just works. And as we’ll see later, the
fact that they are normal objects also allows them to be stored freely on shared queues.

Running multiple threads

To really understand the power of threads running in parallel, though, we have to do
something more long-lived in our threads, just as we did earlier for processes. Let’s
mutate the fork-count program of the prior section to use threads. The script in Ex-
ample 5-6 starts 5 copies of its counter function running in parallel threads.

Example 5-6. PP4E\System\Threads\thread-count.py

nnn

thread basics: start 5 copies of a function running in parallel;
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uses time.sleep so that the main thread doesn't die too early--
this kills all other threads on some platforms; stdout is shared:
thread outputs may be intermixed in this version arbitrarily.

nnn

import _thread as thread, time

def counter(myId, count): # function run in threads
for i in range(count):
time.sleep(1) # simulate real work

print('[%s] => %s' % (myld, 1))

for i in range(5): # spawn 5 threads
thread.start_new thread(counter, (i, 5)) # each thread loops 5 times

time.sleep(6)
print('Main thread exiting."') # don't exit too early

Each parallel copy of the counter function simply counts from zero up to four here and
prints a message to standard output for each count.

Notice how this script sleeps for 6 seconds at the end. On Windows and Linux machines
this has been tested on, the main thread shouldn’t exit while any spawned threads are
running if it cares about their work; if it does exit, all spawned threads are immediately
terminated. This differs from processes, where spawned children live on when parents
exit. Without the sleep here, the spawned threads would die almost immediately after
they are started.

This may seem ad hoc, but it isn’t required on all platforms, and programs are usually
structured such that the main thread naturally lives as long as the threads it starts. For
instance, a user interface may start an FTP download running in a thread, but the
download lives a much shorter life than the user interface itself. Later in this section,
we’ll also see different ways to avoid this sleep using global locks and flags that let
threads signal their completion.

Moreover, we’ll later find that the threading module both provides a join method that
lets us wait for spawned threads to finish explicitly, and refuses to allow a program to
exit at all if any of its normal threads are still running (which may be useful in this case,
but can require extra work to shut down in others). The multiprocessing module we’ll
meet later in this chapter also allows spawned children to outlive their parents, though
this is largely an artifact of its process-based model.

Now, when Example 5-6 is run on Windows 7 under Python 3.1, here is the output I get:

C

[1] => 0
[1] => 0
[0] => 0
[1] => 0
[0] => 0
[2] => 0
[3] => 0

192 | Chapter5: Parallel System Tools



(3]

U
v
o

fafifhaifiefadfuafuan
1 1 1
v Vv Vv
PR RPRRRRR
—
N
—
U
v
=

U
v

LU
VoV

— e —

1
3
3
0
3
0
4

U
v

[1] => 2
[3] => 2[4] => 2
[3] => 2[4] => 2
[0] => 2
[3] => 2[4] => 2
[0] => 2
[2] => 2
[3] => 2[4] => 2
[0] => 2
[2] => 2

...more output omitted...
Main thread exiting.

If this looks odd, it’s because it should. In fact, this demonstrates probably the most
unusual aspect of threads. What’s happening here is that the output of the 5 threads
run in parallel is intermixed—because all the threaded function calls run in the same
process, they all share the same standard output stream (in Python terms, there is just
one sys.stdout file between them, which is where printed text is sent). The net effect
is that their output can be combined and confused arbitrarily. In fact, this script’s
output can differ on each run. This jumbling of output grew even more pronounced in
Python 3, presumably due to its new file output implementation.

More fundamentally, when multiple threads can access a shared resource like this, their
access must be synchronized to avoid overlap in time—as explained in the next section.

Synchronizing access to shared objects and names

One of the nice things about threads is that they automatically come with a cross-task
communications mechanism: objects and namespaces in a process that span the life of
threads are shared by all spawned threads. For instance, because every thread runs in
the same process, if one Python thread changes a global scope variable, the change can
be seen by every other thread in the process, main or child. Similarly, threads can share
and change mutable objects in the process’s memory as long as they hold a reference
to them (e.g., passed-in arguments). This serves as a simple way for a program’s threads
to pass information—exit flags, result objects, event indicators, and so on—back and
forth to each other.

The downside to this scheme is that our threads must sometimes be careful to avoid
changing global objects and names at the same time. If two threads may change a shared
object at once, it’s not impossible that one of the two changes will be lost (or worse,
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will silently corrupt the state of the shared object completely): one thread may step on
the work done so far by another whose operations are still in progress. The extent to
which this becomes an issue varies per application, and sometimes it isn’t an issue at all.

But even things that aren’t obviously at risk may be at risk. Files and streams, for ex-
ample, are shared by all threads in a program; if multiple threads write to one stream
at the same time, the stream might wind up with interleaved, garbled data. Exam-
ple 5-6 of the prior section was a simple demonstration of this phenomenon in action,
but it’s indicative of the sorts of clashes in time that can occur when our programs go
parallel. Even simple changes can go awry if they might happen concurrently. To be
robust, threaded programs need to control access to shared global items like these so
that only one thread uses them at once.

Luckily, Python’s _thread module comes with its own easy-to-use tools for synchro-
nizing access to objects shared among threads. These tools are based on the concept
of a lock—to change a shared object, threads acquire a lock, make their changes, and
then release the lock for other threads to grab. Python ensures that only one thread can
hold a lock at any point in time; if others request it while it’s held, they are blocked
until the lock becomes available. Lock objects are allocated and processed with simple
and portable calls in the _thread module that are automatically mapped to thread lock-
ing mechanisms on the underlying platform.

For instance, in Example 5-7, a lock object created by _thread.allocate_lock is ac-
quired and released by each thread around the print call that writes to the shared
standard output stream.

Example 5-7. PP4E\System\Threads\thread-count-mutex.py

nnn

synchronize access to stdout: because it is shared global,
thread outputs may be intermixed if not synchronized

nnn

import _thread as thread, time

def counter(myId, count): # function run in threads
for i in range(count):
time.sleep(1) # simulate real work
mutex.acquire()
print('[%s] => %s' % (myId, 1)) # print isn't interrupted now
mutex.release()
mutex = thread.allocate lock() # make a global lock object
for i in range(5): # spawn 5 threads
thread.start_new thread(counter, (i, 5)) # each thread loops 5 times

time.sleep(6)
print('Main thread exiting."') # don't exit too early

Really, this script simply augments Example 5-6 to synchronize prints with a thread
lock. The net effect of the additional lock calls in this script is that no two threads will
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ever execute a print call at the same point in time; the lock ensures mutually exclusive
access to the stdout stream. Hence, the output of this script is similar to that of the
original version, except that standard output text is never mangled by overlapping
prints:

C:\...\PP4E\System\Threads> thread-count-mutex.py

[0] => 0
[1] => 0
[3] => 0
[2] => 0
[4] = 0
[0] => 1
[1] => 1
[3] =>1
[2] => 1
[4] => 1
[0] => 2
[1] => 2
[3] => 2
[4] => 2
[2] => 2
[0] => 3
[1] => 3
[3] =3
[4] => 3
[2] => 3
[0] => 4
[1] => 4
[3] => 4

4

[4] =

[2] => 4

Main thread exiting.
Though somewhat platform-specific, the order in which the threads check in with their
prints may still be arbitrary from run to run because they execute in parallel (getting
work done in parallel is the whole point of threads, after all); but they no longer collide
in time while printing their text. We’ll see other cases where the lock idiom comes in
to play later in this chapter—it’s a core component of the multithreading model.

Waiting for spawned thread exits

Besides avoiding print collisions, thread module locks are surprisingly useful. They can
form the basis of higher-level synchronization paradigms (e.g., semaphores) and can
be used as general thread communication devices.S For instance, Example 5-8 uses a
global list of locks to know when all child threads have finished.

§ They cannot, however, be used to directly synchronize processes. Since processes are more independent, they
usually require locking mechanisms that are more long-lived and external to programs. Chapter 4’s
os.open call with an open flag of 0_EXCL allows scripts to lock and unlock files and so is ideal as a cross-process
locking tool. See also the synchronization tools in the multiprocessing and threading modules and the IPC
section later in this chapter for other general synchronization ideas.

Threads | 195



Example 5-8. PP4E\System\Threads\thread-count-wait1.py

nnn

uses mutexes to know when threads are done in parent/main thread,
instead of time.sleep; lock stdout to avoid comingled prints;

non

import _thread as thread
stdoutmutex = thread.allocate lock()
exitmutexes = [thread.allocate lock() for i in range(10)]

def counter(myId, count):
for i in range(count):
stdoutmutex.acquire()
print('[%s] => %s' % (myId, 1))
stdoutmutex.release()
exitmutexes[myId].acquire() # signal main thread

for i in range(10):
thread.start_new_thread(counter, (i, 100))

for mutex in exitmutexes:
while not mutex.locked(): pass
print('Main thread exiting."')

A lock’s locked method can be used to check its state. To make this work, the main
thread makes one lock per child and tacks them onto a global exitmutexes list (re-
member, the threaded function shares global scope with the main thread). On exit,
each thread acquires its lock on the list, and the main thread simply watches for all
locks to be acquired. This is much more accurate than naively sleeping while child
threads run in hopes that all will have exited after the sleep. Run this on your own to
see its output—all 10 spawned threads count up to 100 (they run in arbitrarily inter-
leaved order that can vary per run and platform, but their prints run atomically and do
not comingle), before the main thread exits.

Depending on how your threads run, this could be even simpler: since threads share
global memory anyhow, we can usually achieve the same effect with a simple global
list of integers instead of locks. In Example 5-9, the module’s namespace (scope) is
shared by top-level code and the threaded function, as before. exitmutexes refers to the
same list object in the main thread and all threads it spawns. Because of that, changes
made in a thread are still noticed in the main thread without resorting to extra locks.

Example 5-9. PP4E\System\Threads\thread-count-wait2.py

wnn

uses simple shared global data (not mutexes) to know when threads
are done in parent/main thread; threads share list but not its items,
assumes list won't move in memory once it has been created initially

nnn

import _thread as thread
stdoutmutex = thread.allocate lock()
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exitmutexes = [False] * 10

def counter(myId, count):
for i in range(count):
stdoutmutex.acquire()
print('[%s] => %s' % (myId, 1))
stdoutmutex.release()
exitmutexes[myId] = True # signal main thread

for i in range(10):
thread.start_new_thread(counter, (i, 100))

while False in exitmutexes: pass
print('Main thread exiting.')

The output of this script is similar to the prior—10 threads counting to 100 in parallel
and synchronizing their prints along the way. In fact, both of the last two counting
thread scripts produce roughly the same output as the original thread_count.py, albeit
without stdout corruption and with larger counts and different random ordering of
output lines. The main difference is that the main thread exits immediately after (and
no sooner than!) the spawned child threads:

C:\...\PP4E\System\Threads> python thread-count-wait2.py
...more deleted...

[4] => 98
[6] => 98
[8] => 98
[5] => 98
[0] => 99
[7] => 98
[9] => 98
[1] => 99
[3] => 99
[2] => 99
[4] => 99
[6] => 99
[8] => 99
[5] => 99
[7] => 99
[9] => 99

Main thread exiting.

Coding alternatives: busy loops, arguments, and context managers

Notice how the main threads of both of the last two scripts fall into busy-wait loops at
the end, which might become significant performance drains in tight applications. If
so, simply add a time.sleep call in the wait loops to insert a pause between end tests
and to free up the CPU for other tasks: this call pauses the calling thread only (in this
case, the main one). You might also try experimenting with adding sleep calls to the
thread function to simulate real work.
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Passing in the lock to threaded functions as an argument instead of referencing it in the
global scope might be more coherent, too. When passed in, all threads reference the
same object, because they are all part of the same process. Really, the process’s object
memory is shared memory for threads, regardless of how objects in that shared memory
are referenced (whether through global scope variables, passed argument names, object
attributes, or another way).

And while we’re at it, the with statement can be used to ensure thread operations around
a nested block of code, much like its use to ensure file closure in the prior chapter. The
thread lock’s context manager acquires the lock on with statement entry and releases
it on statement exit regardless of exception outcomes. The net effect is to save one line
of code, but also to guarantee lock release when exceptions are possible. Exam-
ple 5-10 adds all these coding alternatives to our threaded counter script.

Example 5-10. PP4E\System\Threads\thread-count-wait3.py

nnn

passed in mutex object shared by all threads instead of globals;
use with context manager statement for auto acquire/release;
sleep calls added to avoid busy loops and simulate real work

nnn

import _thread as thread, time

stdoutmutex = thread.allocate_lock()

numthreads =5

exitmutexes = [thread.allocate lock() for i in range(numthreads)]

def counter(myId, count, mutex): # shared object passed in
for i in range(count):
time.sleep(1 / (myId+1)) # diff fractions of second
with mutex: # auto acquire/release: with
print('[%s] => %s' % (myId, 1))
exitmutexes[myId].acquire() # global: signal main thread

for i in range(numthreads):
thread.start_new_thread(counter, (i, 5, stdoutmutex))

while not all(mutex.locked() for mutex in exitmutexes): time.sleep(0.25)
print('Main thread exiting.')

When run, the different sleep times per thread make them run more independently:
C:\...\PP4E\System\Threads> thread-count-wait3.py

[4] => 0
[3] => 0
[2] => 0
[4] = 1
[1] => 0
[3] => 1
[4] = 2
[2] => 1
[3] => 2
[4] => 3

198 | Chapter5: Parallel System Tools



[4] => 4
[0] => 0
[1] => 1
[2] => 2
[3] = 3
[3] => 4
[2] => 3
[1] => 2
[2] => 4
[0] => 1
[1] => 3
[1] => 4
[0] => 2
[0] => 3
[o] => 4

Main thread exiting.

Of course, threads are for much more than counting. We’ll put shared global data to
more practical use in “Adding a User Interface” on page 867, where it will serve as
completion signals from child processing threads transferring data over a network to a
main thread controlling a tkinter GUI display, and again later in Chapter 10’s thread-
tools and Chapter 14’s PyMailGUI to post results of email operations to a GUI (watch
for “Preview: GUIs and Threads” on page 208 for more pointers on this topic). Global
data shared among threads also turns out to be the basis of queues, which are discussed
later in this chapter; each thread gets or puts data using the same shared queue object.

The threading Module

The Python standard library comes with two thread modules: _thread, the basic lower-
level interface illustrated thus far, and threading, a higher-level interface based on
objects and classes. The threading module internally uses the thread module to im-
plement objects that represent threads and common synchronization tools. It is loosely
based on a subset of the Java language’s threading model, but it differs in ways that
only Java programmers would notice.l Example 5-11 morphs our counting threads
example again to demonstrate this new module’s interfaces.

Example 5-11. PP4E\System\Threads\thread-classes.py

nun

thread class instances with state and run() for thread's action;
uses higher-level Java-like threading module object join method (not
mutexes or shared global vars) to know when threads are done in main
parent thread; see library manual for more details on threading;

import threading
[l But in case this means you, Python’s lock and condition variables are distinct objects, not something inherent

in all objects, and Python’s Thread class doesn’t have all the features of Java’s. See Python’s library manual
for further details.
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class Mythread(threading.Thread): # subclass Thread object
def _init_ (self, myId, count, mutex):
self.myId = myId
self.count = count # per-thread state information
self.mutex = mutex # shared objects, not globals
threading.Thread. init_ (self)

def run(self): # run provides thread logic
for i in range(self.count): # still sync stdout access
with self.mutex:
print('[%s] => %s' % (self.myId, i))

stdoutmutex = threading.Lock() # same as thread.allocate lock()

threads = []

for i in range(10):
thread = Mythread(i, 100, stdoutmutex) # make/start 10 threads
thread.start() # starts run method in a thread
threads.append(thread)

for thread in threads:
thread.join() # wait for thread exits
print('Main thread exiting.')

The output of this script is the same as that shown for its ancestors earlier (again, threads

may be randomly distributed in time, depending on your platform):

C:\...\PP4E\System\Threads> python thread-classes.py
...more deleted...

[4] => 98
[8] => 97
[9] => 97
[5] => 98
[3] => 99
[6] => 98
[7] => 98
[4] => 99
[8] => 98
[9] => 98
[5] => 99
[6] => 99
[7] => 99
[8] => 99
[9] => 99

Main thread exiting.

Using the threading module this way is largely a matter of specializing classes. Threads
in this module are implemented with a Thread object, a Python class which we may
customize per application by providing a run method that defines the thread’s action.
For example, this script subclasses Thread with its own Mythread class; the run method
will be executed by the Thread framework in a new thread when we make a Mythread
and call its start method.
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In other words, this script simply provides methods expected by the Thread framework.
The advantage of taking this more coding-intensive route is that we get both per-thread
state information (the usual instance attribute namespace), and a set of additional
thread-related tools from the framework “for free.” The Thread. join method used near
the end of this script, for instance, waits until the thread exits (by default); we can use
this method to prevent the main thread from exiting before its children, rather than
using the time.sleep callsand global locks and variables we relied on in earlier threading
examples.

The example script also uses threading.Lock to synchronize stream access as before
(though this name is really just a synonym for thread.allocate lock in the current
implementation). The threading module may provide the extra structure of classes, but
it doesn’t remove the specter of concurrent updates in the multithreading model in
general.

Other ways to code threads with threading

The Thread class can also be used to start a simple function, or any other type of callable
object, without coding subclasses at all—if not redefined, the Thread class’s default
run method simply calls whatever you pass to its constructor’s target argument, with
any provided arguments passed to args (which defaults to () for none). This allows us
to use Thread to run simple functions, too, though this call form is not noticeably sim-
pler than the basic _thread module. For instance, the following code snippets sketch
four different ways to spawn the same sort of thread (see four-threads*.py in the exam-
ples tree; you can run all four in the same script, but would have to also synchronize
prints to avoid overlap):

import threading, thread

def action(i):

print(i ** 32)

# subclass with state
class Mythread(threading.Thread):
def _init_ (self, i):

self.i =1
threading.Thread. init_ (self)
def run(self): # redefine run for action
print(self.i ** 32)
Mythread(2).start() # start invokes run()

# pass action in
thread = threading.Thread(target=(lambda: action(2))) # run invokes target
thread.start()

# same but no lambda wrapper for state
threading.Thread(target=action, args=(2,)).start() # callable plus its args

# basic thread module
_thread.start_new_thread(action, (2,)) # all-function interface
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As arule of thumb, class-based threads may be better if your threads require per-thread
state, or can leverage any of OOP’s many benefits in general. Your thread classes don’t
necessarily have to subclass Thread, though. In fact, just as in the thread module, the
thread’s target in threading may be any type of callable object. When combined with
techniques such as bound methods and nested scope references, the choice between
coding techniques becomes even less clear-cut:

# a non-thread class with state, 00P

class Power:

def _init_ (self, i):
self.i = 1

def action(self):
print(self.i ** 32)

obj = Power(2)
threading.Thread(target=obj.action).start() # thread runs bound method

# nested scope to retain state
def action(i):
def power():
print(i ** 32)
return power

threading.Thread(target=action(2)).start() # thread runs returned function

# both with basic thread module
_thread.start _new_thread(obj.action, ()) # thread runs a callable object
_thread.start_new_thread(action(2), ())

As usual, the threading APIs are as flexible as the Python language itself.

Synchronizing access to shared objects and names revisited

Earlier, we saw how print operations in threads need to be synchronized with locks to
avoid overlap, because the output stream is shared by all threads. More formally,
threads need to synchronize their changes to any item that may be shared across thread
in a process—both objects and namespaces. Depending on a given program’s goals,
this might include:

* Mutable object in memory (passed or otherwise referenced objects whose lifetimes
span threads)

* Names in global scopes (changeable variables outside thread functions and classes)

* The contents of modules (each has just one shared copy in the system’s module
table)

For instance, even simple global variables can require coordination if concurrent up-
dates are possible, as in Example 5-12.
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Example 5-12. PP4E\System\Threads\thread-add-random.py

"prints different results on different runs on Windows 7"

import threading, time
count = 0

def adder():
global count
count = count + 1 # update a shared name in global scope
time.sleep(0.5) # threads share object memory and global names
count = count + 1

threads = []

for i in range(100):
thread = threading.Thread(target=adder, args=())
thread.start()
threads.append(thread)

for thread in threads: thread.join()
print(count)

Here, 100 threads are spawned to update the same global scope variable twice (with a
sleep between updates to better interleave their operations). When run on Windows 7
with Python 3.1, different runs produce different results:

C:\...\PP4E\System\Threads> thread-add-random.py
189

C:\...\PP4E\System\Threads> thread-add-random.py
200

C:\...\PP4E\System\Threads> thread-add-random.py
194

C:\...\PP4E\System\Threads> thread-add-random.py
191

This happens because threads overlap arbitrarily in time: statements, even the simple
assignment statements like those here, are not guaranteed to run to completion by
themselves (that is, they are not atomic). As one thread updates the global, it may be
using the partial result of another thread’s work in progress. The net effect is this seem-
ingly random behavior. To make this script work correctly, we need to again use thread
locks to synchronize the updates—when Example 5-13 is run, it always prints 200 as
expected.

Example 5-13. PP4E\System\Threads\thread-add-synch.py

"prints 200 each time, because shared resource access synchronized"

import threading, time
count = 0

def adder(addlock): # shared lock object passed in
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global count
with addlock:
count = count + 1 # auto acquire/release around stmt
time.sleep(0.5)
with addlock:
count = count + 1 # only 1 thread updating at once

addlock = threading.Lock()

threads = []

for i in range(100):
thread = threading.Thread(target=adder, args=(addlock,))
thread.start()
threads.append(thread)

for thread in threads: thread.join()
print(count)

Although some basic operations in the Python language are atomic and need not be
synchronized, you’re probably better off doing so for every potential concurrent up-
date. Not only might the set of atomic operations change over time, but the internal
implementation of threads in general can as well (and in fact, it may in Python 3.2, as

described ahead).

Of course, this is an artificial example (spawning 100 threads to add twice isn’t exactly
areal-world use case for threads!), but it illustrates the issues that threads must address
for any sort of potentially concurrent updates to shared object or name. Luckily, for
many or most realistic applications, the queue module of the next section can make
thread synchronization an automatic artifact of program structure.

Before we move ahead, I should point out that besides Thread and Lock, the
threading module also includes higher-level objects for synchronizing access to shared
items (e.g., Semaphore, Condition, Event)—many more, in fact, than we have space to
cover here; see the library manual for details. For more examples of threads and forks
in general, see the remainder this chapter as well as the examples in the GUI and net-
work scripting parts of this book. We will thread GUIs, for instance, to avoid blocking
them, and we will thread and fork network servers to avoid denying service to clients.

We’ll also explore the threading module’s approach to program exits in the absence of
join calls in conjunction with queues—our next topic.

The queue Module

You can synchronize your threads’ access to shared resources with locks, but you often
don’thave to. As mentioned, realistically scaled threaded programs are often structured
as a set of producer and consumer threads, which communicate by placing data on,
and taking it off of, a shared queue. As long as the queue synchronizes access to itself,
this automatically synchronizes the threads’ interactions.
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The Python queue module implements this storage device. It provides a standard queue
data structure—a first-in first-out (fifo) list of Python objects, in which items are added
on one end and removed from the other. Like normal lists, the queues provided by this
module may contain any type of Python object, including both simple types (strings,
lists, dictionaries, and so on) and more exotic types (class instances, arbitrary callables
like functions and bound methods, and more).

Unlike normal lists, though, the queue object is automatically controlled with thread
lock acquire and release operations, such that only one thread can modify the queue
at any given point in time. Because of this, programs that use a queue for their cross-
thread communication will be thread-safe and can usually avoid dealing with locks of
their own for data passed between threads.

Like the other tools in Python’s threading arsenal, queues are surprisingly simple to
use. The scriptin Example 5-14, for instance, spawns two consumer threads that watch
for data to appear on the shared queue and four producer threads that place data on
the queue periodically after a sleep interval (each of their sleep durations differs to
simulate a real, long-running task). In other words, this program runs 7 threads (in-
cluding the main one), 6 of which access the shared queue in parallel.

Example 5-14. PP4E\System\Threads\queuetest.py

"producer and consumer threads communicating with a shared queue”

numconsumers = 2 # how many consumers to start
numproducers = 4 # how many producers to start
nummessages = 4 # messages per producer to put

import _thread as thread, queue, time
safeprint = thread.allocate lock() # else prints may overlap
dataQueue = queue.Queue() # shared global, infinite size

def producer(idnum):
for msgnum in range(nummessages):
time.sleep(idnum)
dataQueue.put('[producer id=%d, count=%d]' % (idnum, msgnum))

def consumer (idnum):
while True:
time.sleep(0.1)
try:
data = dataQueue.get(block=False)
except queue.Empty:
pass
else:
with safeprint:
print('consumer', idnum, 'got =>', data)

if name_ =="' main_':
for i in range(numconsumers):
thread.start_new thread(consumer, (i,))
for i in range(numproducers):
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thread.start_new_thread(producer, (i,))
time.sleep(((numproducers-1) * nummessages) + 1)
print('Main thread exit.')

Before I show you this script’s output, I want to highlight a few points in its code.

Arguments versus globals

Notice how the queue is assigned to a global variable; because of that, it is shared by
all of the spawned threads (all of them run in the same process and in the same global
scope). Since these threads change an object instead of a variable name, it would work
just as well to pass the queue object in to the threaded functions as an argument—the
queue is a shared object in memory, regardless of how it is referenced (see
queuetest2.py in the examples tree for a full version that does this):

dataQueue = queue.Queue() # shared object, infinite size

def producer(idnum, dataqueue):
for msgnum in range(nummessages):
time.sleep(idnum)
dataqueue.put('[producer id=%d, count=%d]' % (idnum, msgnum))

def consumer(idnum, dataqueue): ...

if _name_ =="'_ main_ ':
for i in range(numproducers):
thread.start_new_thread(producer, (i, dataQueue))
for i in range(numproducers):
thread.start_new_thread(producer, (i, dataQueue))

Program exit with child threads

Also notice how this script exits when the main thread does, even though consumer
threads are still running in their infinite loops. This works fine on Windows (and most
other platforms)—with the basic _thread module, the program ends silently when the
main thread does. This is why we’ve had to sleep in some examples to give threads time
to do their work, but is also why we do not need to be concerned about exiting while
consumer threads are still running here.

In the alternative threading module, though, the program will not exit if any spawned
threads are running, unless they are set to be daemon threads. Specifically, the entire
program exits when only daemon threads are left. Threads inherit a default initial dae-
monic value from the thread that creates them. The initial thread of a Python program
is considered not daemonic, though alien threads created outside this module’s control
are considered daemonic (including some threads created in C code). To override in-
herited defaults, a thread object’s daemon flag can be set manually. In other words,
nondaemon threads prevent program exit, and programs by default do not exit until
all threading-managed threads finish.
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This is either a feature or nonfeature, depending on your program—it allows spawned
worker threads to finish their tasks in the absence of join calls or sleeps, but it can
prevent programs like the one in Example 5-14 from shutting down when they wish.
To make this example work with threading, use the following alternative code (see
queuetest3.py in the examples tree for a complete version of this, as well as thread-count-
threading.py, also in the tree, for a case where this refusal to exit can come in handy):

import threading, queue, time
def producer(idnum, dataqueue): ...

def consumer(idnum, dataqueue): ...

if name == "' main_':
for i in range(numconsumers):
thread = threading.Thread(target=consumer, args=(i, dataQueue))
thread.daemon = True # else cannot exit!
thread.start()

waitfor = []

for i in range(numproducers):
thread = threading.Thread(target=producer, args=(i, dataQueue))
waitfor.append(thread)
thread.start()

for thread in waitfor: thread.join() # or time.sleep() long enough here
print('Main thread exit.')

We'll revisit the daemons and exits issue in Chapter 10 while studying GUIs; as we’ll
see, it’sno different in that context, except that the main thread is usually the GUT itself.

Running the script

Now, as coded in Example 5-14, the following is the output of this example when run
on my Windows machine. Notice that even though the queue automatically coordi-
nates the communication of data between the threads, this script still must use a lock
to manually synchronize access to the standard output stream; queues synchronize data
passing, but some programs may still need to use locks for other purposes. As in prior
examples, if the safeprint lock is not used, the printed lines from one consumer may
be intermixed with those of another. Itis not impossible that a consumer may be paused
in the middle of a print operation:

C:\...\PP4E\System\Threads> queuetest.py
consumer 1 got => [producer id=0, count=0]
consumer 0 got => [producer id=0, count=1]
consumer 1 got => [producer id=0, count=2]
consumer 0 got => [producer id=0, count=3
consumer 1 got => [producer id=1, count=0
consumer 1 got => [producer id=2, count=0
consumer 0 got => [producer id=1, count=1
consumer 1 got => [producer id=3, count=0
consumer 0 got => [producer id=1, count=2

]
]
]
]
]
]
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consumer 1 got => [producer id=2, count=1]
consumer 1 got => [producer id=1, count=3]
consumer 1 got => [producer id=3, count=1]
consumer 0 got => [producer id=2, count=2]
consumer 1 got => [producer id=2, count=3]
consumer 1 got => [producer id=3, count=2]
consumer 1 got => [producer id=3, count=3]
Main thread exit.

Try adjusting the parameters at the top of this script to experiment with different sce-
narios. A single consumer, for instance, would simulate a GUT’s main thread. Here is
the output of a single-consumer run—producers still add to the queue in fairly random
fashion, because threads run in parallel with each other and with the consumer:

C:\...\PP4E\System\Threads> queuetest.py
consumer 0 got => [producer id=0, count=0]

consumer 0 got => [producer id=0, count=1]
consumer 0 got => [producer id=0, count=2]
consumer 0 got => [producer id=0, count=3]
consumer 0 got => [producer id=1, count=0]
consumer 0 got => [producer id=2, count=0]
consumer 0 got => [producer id=1, count=1]
consumer 0 got => [producer id=3, count=0]
consumer 0 got => [producer id=1, count=2]
consumer 0 got => [producer id=2, count=1]
consumer 0 got => [producer id=1, count=3]
consumer 0 got => [producer id=3, count=1]
consumer 0 got => [producer id=2, count=2]
consumer 0 got => [producer id=2, count=3]
consumer 0 got => [producer id=3, count=2]
consumer 0 got => [producer id=3, count=3]

Main thread exit.

In addition to the basics used in our script, queues may be fixed or infinite in size, and
get and put calls may or may not block; see the Python library manual for more details
on queue interface options. Since we just simulated a typical GUI structure, though,
let’s explore the notion a bit further.

Preview: GUIs and Threads

We will return to threads and queues and see additional thread and queue examples
when we study GUIs later in this book. The PyMailGUI example in Chapter 14, for
instance, will make extensive use of thread and queue tools introduced here and de-
veloped further in Chapter 10, and Chapter 9 will discuss threading in the context of
the tkinter GUIT toolkit once we’ve had a chance to study it. Although we can’t get into
code at this point, threads are usually an integral part of most nontrivial GUIs. In fact,
the activity model of many GUIs is a combination of threads, a queue, and a timer-
based loop.

Here’s why. In the context of a GUI, any operation that can block or take a long time
to complete must be spawned off to run in parallel so that the GUI (the main thread)
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remains active and continues responding to its users. Although such tasks can be run
as processes, the efficiency and shared-state model of threads make them ideal for this
role. Moreover, since most GUI toolkits do not allow multiple threads to update the
GUTI in parallel, updates are best restricted to the main thread.

Because only the main thread should generally update the display, GUI programs typ-
ically take the form of a main GUI thread and one or more long-running producer
threads—one for each long-running task being performed. To synchronize their points
of interface, all of the threads share data on a global queue: non-GUI threads post
results, and the GUI thread consumes them.

More specifically:

* The main thread handles all GUI updates and runs a timer-based loop that wakes
up periodically to check for new data on the queue to be displayed on-screen. In
Python’s tkinter toolkit, for instance, the widget after (msecs, func, *args) method
can be used to schedule queue-check events. Because such events are dispatched
by the GUT’s event processor, all GUI updates occur only in this main thread (and
often must, due to the lack of thread safety in GUI toolkits).

* The child threads don’t do anything GUI-related. They just produce data and put
it on the queue to be picked up by the main thread. Alternatively, child threads
can place a callback function on the queue, to be picked up and run by the main
thread. It’s not generally sufficient to simply pass in a GUI update callback function
from the main thread to the child thread and run it from there; the function in
shared memory will still be executed in the child thread, and potentially in parallel
with other threads.

Since threads are much more responsive than a timer event loop in the GUI, this scheme
both avoids blocking the GUI (producer threads run in parallel with the GUI), and
avoids missing incoming events (producer threads run independent of the GUI event
loop and as fast as they can). The main GUI thread will display the queued results as
quickly as it can, in the context of a slower GUI event loop.

Also keep in mind that regardless of the thread safety of a GUI toolkit, threaded GUI
programs must still adhere to the principles of threaded programs in general—access
to shared resources may still need to be synchronized if it falls outside the scope of the
producer/consumer shared queue model. If spawned threads might also update an-
other shared state thatis used by the main GUI thread, thread locks may also be required
to avoid operation overlap. For instance, spawned threads that download and cache
email probably cannot overlap with others that use or update the same cache. That s,
queues may not be enough; unless you can restrict threads” work to queuing their
results, threaded GUIs still must address concurrent updates.

We'll see how the threaded GUI model can be realized in code later in this book. For
more on this subject, see especially the discussion of threaded tkinter GUIs in
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Chapter 9, the thread queue tools implemented in Chapter 10, and the PyMailGUI
example in Chapter 14.

Later in this chapter, we’ll also meet the multiprocessing module, whose process and
queue support offers new options for implementing this GUI model using processes
instead of threads; as such, they work around the limitations of the thread GIL, but
may incur extra performance overheads that can vary per platform, and may not be
directly usable at all in threading contexts (the direct shared and mutable object state
of threads is not supported, though messaging is). For now, let’s cover a few final thread
fine points.

Thread Timers versus GUI Timers

Interestingly, the threading module exports a general timer function, which, like the
tkinter widget after method, can be used to run another function after a timer has
expired:

Timer(N.M, somefunc).start() # after N.M seconds run somefunc

Timer objects have a start() method to set the timer as well as a cancel() method to
cancel the scheduled event, and they implement the wait state in a spawned thread.
For example, the following prints a message after 5.5 seconds:

>>> import sys

>>> from threading import Timer

>>> t = Timer(5.5, lambda: print('Spam!')) # spawned thread

>>> t.start()
>>> Spam!

This may be useful in a variety of contexts, but it doesn’t quite apply to GUIs: because
the time-delayed function call is run in a spawned thread, not in the main GUI thread,
it should not generally perform GUI updates. Because the tkinter after method is run
from the main thread’s event processing loop instead, it runs in the main GUI thread
and can freely update the GUIL.

As a preview, for instance, the following displays a pop-up message window in 5.5
seconds in the main thread of a tkinter GUI (you might also have to run win.main
loop() in some interfaces):

>>> from tkinter import Tk

>>> from tkinter.messagebox import showinfo

>>> win = Tk()
>>> win.after (5500, lambda: showinfo('Popup’, 'Spam!'))

The last call here schedules the function to be run once in the main GUI thread, but it
does not pause the caller during the wait, and so does not block the GUI. It’s equivalent
to this simpler form:

>>> win.after(5500, showinfo, 'Popup', 'Spam')

Stay tuned for much more on tkinter in the next part of this book, and watch for the
full story on its after timer events in Chapter 9 and the roles of threads in GUIs in
Chapter 10.
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More on the Global Interpreter Lock

Although it’s a lower-level topic than you generally need to do useful thread work in
Python, the implementation of Python’s threads can have impacts on both performance
and coding. This section summarizes implementation details and some of their
ramifications.

Threads implementation in the upcoming Python 3.2: This section de-
scribes the current implementation of threads up to and including Py-

| thon 3.1. At this writing, Python 3.2 is still in development, but one of
its likely enhancements is a new version of the GIL that provides better
performance, especially on some multicore CPUs. The new GIL imple-
mentation will still synchronize access to the PVM (Python language
code is still multiplexed as before), but it will use a context switching
scheme that is more efficient than the current N-bytecode-instruction
approach.

Among other things, the current sys.setcheckinterval call will likely
be replaced with a timer duration call in the new scheme. Specifically,
the concept of a check interval for thread switches will be abandoned
and replaced by an absolute time duration expressed in seconds. It’s
anticipated that this duration will default to 5 milliseconds, but it will
be tunable through sys.setswitchinterval.

Moreover, there have been a variety of plans made to remove the GIL
altogether (including goals of the Unladen Swallow project being con-
ducted by Google employees), though none have managed to produce
any fruit thus far. Since I cannot predict the future, please see Python
release documents to follow this (well...) thread.

Strictly speaking, Python currently uses the global interpreter lock (GIL) mechanism
introduced at the start of this section, which guarantees that one thread, at most, is
running code within the Python interpreter at any given point in time. In addition, to
make sure that each thread gets a chance to run, the interpreter automatically switches
its attention between threads at regular intervals (in Python 3.1, by releasing and ac-
quiring the lock after a number of bytecode instructions) as well as at the start of long-
running operations (e.g., on some file input/output requests).

This scheme avoids problems that could arise if multiple threads were to update Python
system data at the same time. For instance, if two threads were allowed to simultane-
ously change an object’s reference count, the result might be unpredictable. This
scheme can also have subtle consequences. In this chapter’s threading examples, for
instance, the stdout stream can be corrupted unless each thread’s call to write text is
synchronized with thread locks.

Moreover, even though the GIL prevents more than one Python thread from running
at the same time, it is not enough to ensure thread safety in general, and it does not
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address higher-level synchronization issues at all. For example, as we saw, when more
than one thread might attempt to update the same variable at the same time, the threads
should generally be given exclusive access to the object with locks. Otherwise, it’s not
impossible that thread switches will occur in the middle of an update statement’s
bytecode.

Locks are not strictly required for all shared object access, especially if a single thread
updates an object inspected by other threads. As a rule of thumb, though, you should
generally use locks to synchronize threads whenever update rendezvous are possible
instead of relying on artifacts of the current thread implementation.

The thread switch interval

Some concurrent updates might work without locks if the thread-switch interval is set
high enough to allow each thread to finish without being swapped out. The
sys.setcheckinterval(N) call sets the frequency with which the interpreter checks for
things like thread switches and signal handlers.

This interval defines the number of bytecode instructions before a switch. It does not
need to be reset for most programs, but it can be used to tune thread performance.
Setting higher values means switches happen less often: threads incur less overhead but
they are less responsive to events. Setting lower values makes threads more responsive
to events but increases thread switch overhead.

Atomic operations

Because of the way Python uses the GIL to synchronize threads’ access to the virtual
machine, whole statements are not generally thread-safe, but each bytecode instruction
is. Because of this bytecode indivisibility, some Python language operations are thread-
safe—also called atomic, because they run without interruption—and do not require
the use of locks or queues to avoid concurrent update issues. For instance, as of this
writing, list.append, fetches and some assignments for variables, list items, dictionary
keys, and object attributes, and other operations were still atomic in standard C Python;
others, such as x = x+1 (and any operation in general that reads data, modifies it, and
writes it back) were not.

As mentioned earlier, though, relying on these rules is a bit of a gamble, because they
require a deep understanding of Python internals and may vary per release. Indeed, the
set of atomic operations may be radically changed if a new free-threaded implementa-
tion ever appears. As a rule of thumb, it may be easier to use locks for all access to global
and shared objects than to try to remember which types of access may or may not be
safe across multiple threads.

C API thread considerations

Finally, if you plan to mix Python with C, also see the thread interfaces described in
the Python/C API standard manual. In threaded programs, C extensions must release
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and reacquire the GIL around long-running operations to let the Python language por-
tions of other Python threads run during the wait. Specifically, the long-running C
extension function should release the lock on entry and reacquire it on exit when re-
suming Python code.

Also note that even though the Python code in Python threads cannot truly overlap in
time due to the GIL synchronization, the C-coded portions of threads can. Any number
may be running in parallel, as long as they do work outside the scope of the Python
virtual machine. In fact, C threads may overlap both with other C threads and with
Python language threads run in the virtual machine. Because of this, splitting code oft
to C libraries is one way that Python applications can still take advantage of multi-CPU
machines.

Still, it may often be easier to leverage such machines by simply writing Python pro-
grams that fork processes instead of starting threads. The complexity of process and
thread code is similar. For more on C extensions and their threading requirements, see
Chapter 20. In short, Python includes C language tools (including a pair of GIL man-
agement macros) that can be used to wrap long-running operations in C-coded exten-
sions and that allow other Python language threads to run in parallel.

A process-based alternative: multiprocessing (ahead)

By now, you should have a basic grasp of parallel processes and threads, and Python’s
tools that support them. Later in this chapter, we’ll revisit both ideas to study the
multiprocessing module—a standard library tool that seeks to combine the simplicity
and portability of threads with the benefits of processes, by implementing a threading-
like API that runs processes instead of threads. It seeks to address the portability issue
of processes, as well as the multiple-CPU limitations imposed in threads by the GIL,
but it cannot be used as a replacement for forking in some contexts, and it imposes
some constraints that threads do not, which stem from its process-based model (for
instance, mutable object state is not directly shared because objects are copied across
process boundaries, and unpickleable objects such as bound methods cannot be as
freely used).

Because the multiprocessing module also implements tools to simplify tasks such as
inter-process communication and exit status, though, let’s first get a handle on Python’s
support in those domains as well, and explore some more process and thread examples
along the way.

Program Exits

Aswe’ve seen, unlike C, there isno “main” function in Python. When we run a program,
we simply execute all of the code in the top-level file, from top to bottom (i.e., in the
filename we listed in the command line, clicked in a file explorer, and so on). Scripts
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normally exit when Python falls off the end of the file, but we may also call for program
exit explicitly with tools in the sys and os modules.

sys Module Exits

For example, the built-in sys.exit function ends a program when called, and earlier
than normal:

>>> sys.exit(N) # exit with status N, else exits on end of script

Interestingly, this call really just raises the built-in SystemExit exception. Because of
this, we can catch it as usual to intercept early exits and perform cleanup activities; if
uncaught, the interpreter exits as usual. For instance:
C:\...\PP4E\System> python
>>> import sys
>>> try:
sys.exit() # see also: os. exit, Tk().quit()
. except SystemExit:
print('ignoring exit')

ignoring exit

>>>
Programming tools such as debuggers can make use of this hook to avoid shutting
down. In fact, explicitly raising the built-in SystemExit exception with a Python raise
statement is equivalent to calling sys.exit. More realistically, a try block would catch
the exit exception raised elsewhere in a program; the script in Example 5-15, for in-
stance, exits from within a processing function.

Example 5-15. PP4E\System\Exits\testexit_sys.py

def later():
import sys
print('Bye sys world')
sys.exit(42)
print('Never reached')

if _name__ == "'_main__': later()

Running this program as a script causes it to exit before the interpreter falls off the end
of the file. But because sys.exit raises a Python exception, importers of its function
can trap and override its exit exception or specify a finally cleanup block to be run
during program exit processing:

C:\...\PP4E\System\Exits> python testexit_sys.py
Bye sys world

C:\...\PP4E\System\Exits> python
>>> from testexit_sys import later
>>> try:
later()
. except SystemExit:
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print('Ignored...")

Bye sys world

Ignored...

>>> try:
later()

... finally:
print('Cleanup')

Bye sys world
Cleanup

C:\...\PP4E\System\Exits> # interactive session process exits

os Module Exits

It’s possible to exit Python in other ways, too. For instance, within a forked child proc-
ess on Unix, we typically call the os._exit function rather than sys.exit; threads may
exit with a _thread.exit call; and tkinter GUI applications often end by calling some-
thing named Tk().quit(). We’ll meet the tkinter module later in this book; let’s take
a look at os exits here.

On os._exit, the calling process exits immediately instead of raising an exception that
could be trapped and ignored. In fact, the process also exits without flushing output
stream buffers or running cleanup handlers (defined by the atexit standard library
module), so this generally should be used only by child processes after a fork, where
overall program shutdown actions aren’t desired. Example 5-16 illustrates the basics.

Example 5-16. PP4E\System\Exits\testexit_os.py

def outahere():
import os
print('Bye os world")
os._exit(99)
print('Never reached')

if _name__ == '_main__': outahere()

Unlike sys.exit, os._exit is immune to both try/except and try/finally interception:

C:\...\PP4E\System\Exits> python testexit_os.py
Bye os world

C:\...\PP4E\System\Exits> python
>>> from testexit_os import outahere
>>> try:
outahere()
. except:
print('Ignored")

Bye os world # exits interactive process

C:\...\PP4E\System\Exits> python
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>>> from testexit_os import outahere
>>> try:
. outahere()
... finally:
print('Cleanup')

Bye os world # ditto

Shell Command Exit Status Codes

Both the sys and os exit calls we just met accept an argument that denotes the exit
status code of the process (it’s optional in the sys call but required by os). After exit,
this code may be interrogated in shells and by programs that ran the script as a child
process. On Linux, for example, we ask for the status shell variable’s value in order to
fetch the last program’s exit status; by convention, a nonzero status generally indicates
that some sort of problem occurred:

[mark@linux]$ python testexit_sys.py

Bye sys world

[mark@linux]$ echo $status

42

[mark@linux]$ python testexit_os.py

Bye os world

[mark@linux]$ echo $status

99

In a chain of command-line programs, exit statuses could be checked along the way as
a simple form of cross-program communication.

We can also grab hold of the exit status of a program run by another script. For instance,
as introduced in Chapters 2 and 3, when launching shell commands, exit status is
provided as:

* The return value of an os.system call

* The return value of the close method of an os.popen object (for historical reasons,
None is returned if the exit status was 0, which means no error occurred)

* A variety of interfaces in the subprocess module (e.g., the call function’s return
value, a Popen object’s returnvalue attribute and wait method result)

In addition, when running programs by forking processes, the exit status is available
through the os.wait and os.waitpid calls in a parent process.

Exit status with os.system and os.popen

Let’s look at the case of the shell commands first—the following, run on Linux, spawns
Example 5-15, and Example 5-16 reads the output streams through pipes and fetches
their exit status codes:

[mark@linux]$ python

>>> import os
>>> pipe = os.popen('python testexit_sys.py')
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>>> pipe.read()
'Bye sys world\o12'

>>> stat = pipe.close() # returns exit code

>>> stat

10752

>>> hex(stat)

'0x2300'

>>> stat >> 8 # extract status from bitmask on Unix-likes
42

>>> pipe = os.popen('python testexit_os.py')

>>> stat = pipe.close()
>>> stat, stat >> 8

(25344, 99)

This code works the same under Cygwin Python on Windows. When using os.popen
on such Unix-like platforms, for reasons we won’t go into here, the exit status is actually
packed into specific bit positions of the return value; it’s really there, but we need to
shift the result right by eight bits to see it. Commands run with os.system send their
statuses back directly through the Python library call:

>>> stat = os.system('python testexit_sys.py')
Bye sys world

>>> stat, stat >> 8

(10752, 42)

>>> stat = os.system('python testexit os.py')
Bye os world

>>> stat, stat >> 8

(25344, 99)

All of this code works under the standard version of Python for Windows, too, though
exit status is not encoded in a bit mask (test sys.platform if your code must handle
both formats):

C:\...\PP4E\System\Exits> python

>>> os.system('python testexit_sys.py')
Bye sys world

42

>>> os.system('python testexit_os.py')
Bye os world

99

>>> pipe = os.popen('python testexit_sys.py")
>>> pipe.read()

'Bye sys world\n'

>>> pipe.close()

42

>>>

>>> os.popen('python testexit_os.py').close()
99
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Output stream buffering: A first look

Notice that the last test in the preceding code didn’t attempt to read the command’s
output pipe. If we do, we may have to run the target script in unbuffered mode with the
-u Python command-line flag or change the script to flush its output manually with
sys.stdout.flush. Otherwise, the text printed to the standard output stream might not
be flushed from its buffer when os._exit is called in this case for immediate shutdown.
By default, standard output s fully buffered when connected to a pipe like this; it’s only
line-buffered when connected to a terminal:

>>> pipe = os.popen('python testexit os.py')
>>> pipe.read() # streams not flushed on exit

>>> pipe = os.popen('python -u testexit_os.py') # force unbuffered streams
>>> pipe.read()
'Bye os world\n'

Confusingly, you can pass mode and buffering argument to specify line buffering in
both os.popen and subprocess.Popen, but this won’t help here—arguments passed to
these tools pertain to the calling process’s input end of the pipe, not to the spawned
program’s output stream:

>>> pipe = os.popen('python testexit_ os.py', 'r', 1) # line buffered only
>>> pipe.read() # but my pipe, not program's!

>>> from subprocess import Popen, PIPE
>>> pipe = Popen('python testexit_os.py', bufsize=1, stdout=PIPE) # for my pipe
>>> pipe.stdout.read() # doesn't help
b
Really, buffering mode arguments in these tools pertain to output the caller writes to
a command’s standard input stream, not to output read from that command.

If required, the spawned script itself can also manually flush its output buffers period-
ically or before forced exits. More on buffering when we discuss the potential for
deadlocks later in this chapter, and again in Chapters 10 and 12 where we’ll see how it
applies to sockets. Since we brought up subprocess, though, let’s turn to its exit tools
next.

Exit status with subprocess

The alternative subprocess module offers exit status in a variety of ways, as we saw in
Chapters 2 and 3 (a None value in returncode indicates that the spawned program has
not yet terminated):

C:\...\PP4E\System\Exits> python

>>> from subprocess import Popen, PIPE, call

>>> pipe = Popen('python testexit_sys.py', stdout=PIPE)

>>> pipe.stdout.read()

b'Bye sys world\r\n'
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>>> pipe.wait()
42

>>> call('python testexit_sys.py')
Bye sys world
42

>>> pipe = Popen('python testexit_sys.py', stdout=PIPE)
>>> pipe.communicate()

(b'Bye sys world\r\n', None)

>>> pipe.returncode

42

The subprocess module works the same on Unix-like platforms like Cygwin, but unlike
os.popen, the exit status is not encoded, and so it matches the Windows result (note
that shell=True is needed to run this as is on Cygwin and Unix-like platforms, as we
learned in Chapter 2; on Windows this argument is required only to run commands
built into the shell, like dir):

[C:\...\PP4E\System\Exits]$ python

>>> from subprocess import Popen, PIPE, call

>>> pipe = Popen('python testexit_sys.py', stdout=PIPE, shell=True)

>>> pipe.stdout.read()

b'Bye sys world\n'

>>> pipe.wait()

42

>>> call('python testexit_sys.py', shell=True)
Bye sys world
42

Process Exit Status and Shared State

Now, to learn how to obtain the exit status from forked processes, let’s write a simple
forking program: the script in Example 5-17 forks child processes and prints child
process exit statuses returned by os.wait calls in the parent until a “q” is typed at the
console.

Example 5-17. PP4E\System\Exits\testexit_fork.py

non

fork child processes to watch exit status with os.wait; fork works on Unix

and Cygwin but not standard Windows Python 3.1; note: spawned threads share
globals, but each forked process has its own copy of them (forks share file
descriptors)--exitstat is always the same here but will vary if for threads;

nnn

import os

exitstat = 0

def child(): # could os.exit a script here
global exitstat # change this process's global
exitstat += 1 # exit status to parent's wait
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print('Hello from child', os.getpid(), exitstat)
os._exit(exitstat)
print('never reached')

def parent():

while True:
newpid = os.fork() # start a new copy of process
if newpid == o: # if in copy, run child logic
child() # loop until 'q' console input
else:

pid, status = os.wait()
print('Parent got', pid, status, (status >> 8))
if input() == 'q': break

if _name_ == "' main__': parent()

Running this program on Linux, Unix, or Cygwin (remember, fork still doesn’t work
on standard Windows Python as I write the fourth edition of this book) produces the
following sort of results:

[C:\...\PP4E\System\Exits]$ python testexit_fork.py

Hello from child 5828 1
Parent got 5828 256 1

Hello from child 9540 1
Parent got 9540 256 1

Hello from child 3152 1
Parent got 3152 256 1

q

If you study this output closely, you’ll notice that the exit status (the last number prin-
ted) is always the same—the number 1. Because forked processes begin life as copies
of the process that created them, they also have copies of global memory. Because of
that, each forked child gets and changes its own exitstat global variable without
changing any other process’s copy of this variable. At the same time, forked processes
copy and thus share file descriptors, which is why prints go to the same place.

Thread Exits and Shared State

In contrast, threads run in parallel within the same process and share global memory.
Each thread in Example 5-18 changes the single shared global variable, exitstat.

Example 5-18. PP4E\System\Exits\testexit_thread.py

nun

spawn threads to watch shared global memory change; threads normally exit
when the function they run returns, but _thread.exit() can be called to
exit calling thread; _thread.exit is the same as sys.exit and raising
SystemExit; threads communicate with possibly locked global vars; caveat:
may need to make print/input calls atomic on some platforms--shared stdout;

nun

220 | Chapter5: Parallel System Tools



import _thread as thread
exitstat = 0

def child():
global exitstat # process global names
exitstat += 1 # shared by all threads
threadid = thread.get_ident()
print('Hello from child', threadid, exitstat)
thread.exit()
print('never reached')

def parent():
while True:
thread.start new thread(child, ())
if input() == 'q': break

if _name_ == "' main_': parent()

The following shows this script in action on Windows; unlike forks, threads run in the
standard version of Python on Windows, too. Thread identifiers created by Python
differ each time—they are arbitrary but unique among all currently active threads and
so may be used as dictionary keys to keep per-thread information (a thread’s id may be
reused after it exits on some platforms):

C:\...\PP4E\System\Exits> python testexit_thread.py
Hello from child 4908 1

Hello from child 4860 2
Hello from child 2752 3

Hello from child 8964 4
q

Notice how the value of this script’s global exitstat is changed by each thread, because
threads share global memory within the process. In fact, this is often how threads com-
municate in general. Rather than exit status codes, threads assign module-level globals
or change shared mutable objects in-place to signal conditions, and they use thread
module locks and queues to synchronize access to shared items if needed. This script
might need to synchronize, too, if it ever does something more realistic—for global
counter changes, but even print and input may have to be synchronized if they overlap
stream access badly on some platforms. For this simple demo, we forego locks by as-
suming threads won’t mix their operations oddly.

As we’ve learned, a thread normally exits silently when the function it runs returns,
and the function return value is ignored. Optionally, the thread.exit function can be
called to terminate the calling thread explicitly and silently. This call works almost
exactly like sys.exit (but takes no return status argument), and it works by raising a
SystemExit exception in the calling thread. Because of that, a thread can also prema-
turely end by calling sys.exit or by directly raising SystemExit. Be sure not to call
os._exit within a thread function, though—doing so can have odd results (the last time
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[ tried, it hung the entire process on my Linux system and killed every thread in the
process on Windows!).

The alternative threading module for threads has no method equivalent to
_thread.exit(), but since all that the latter does is raise a system-exit exception, doing
the same in threading has the same effect—the thread exits immediately and silently,
as in the following sort of code (see testexit-threading.py in the example tree for this
code):

import threading, sys, time

def action():
sys.exit() # or raise SystemExit()
print('not reached")

threading.Thread(target=action).start()

time.sleep(2)

print('Main exit')
On arelated note, keep in mind that threads and processes have default lifespan models,
which we explored earlier. By way of review, when child threads are still running, the
two thread modules’ behavior differs—programs on most platforms exit when the pa-
rent thread does under _thread, but not normally under threading unless children are
made daemons. When using processes, children normally outlive their parent. This
different process behavior makes sense if you remember that threads are in-process
function calls, but processes are more independent and autonomous.

When used well, exit status can be used to implement error detection and simple com-
munication protocols in systems composed of command-line scripts. But having said
that, I should underscore that most scripts do simply fall off the end of the source to
exit, and most thread functions simply return; explicit exit calls are generally employed
for exceptional conditions and in limited contexts only. More typically, programs com-
municate with richer tools than integer exit codes; the next section shows how.

Interprocess Communication

As we saw earlier, when scripts spawn threads—tasks that run in parallel within the
program—they can naturally communicate by changing and inspecting names and
objects in shared global memory. This includes both accessible variables and attributes,
as well as referenced mutable objects. As we also saw, some care must be taken to use
locks to synchronize access to shared items that can be updated concurrently. Still,
threads offer a fairly straightforward communication model, and the queue module can
make this nearly automatic for many programs.

Things aren’t quite as simple when scripts start child processes and independent pro-
grams that do not share memory in general. If we limit the kinds of communications
that can happen between programs, many options are available, most of which we’ve
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already seen in this and the prior chapters. For example, the following simple mecha-
nisms can all be interpreted as cross-program communication devices:

* Simple files

* Command-line arguments

* Program exit status codes

¢ Shell environment variables
¢ Standard stream redirections

* Stream pipes managed by os.popen and subprocess

For instance, sending command-line options and writing to input streams lets us pass
in program execution parameters; reading program output streams and exit codes gives
us a way to grab a result. Because shell environment variable settings are inherited by
spawned programs, they provide another way to pass context in. And pipes made by
os.popen or subprocess allow even more dynamic communication. Data can be sent
between programs at arbitrary times, not only at program start and exit.

Beyond this set, there are other tools in the Python library for performing Inter-Process
Communication (IPC). This includes sockets, shared memory, signals, anonymous and
named pipes, and more. Some vary in portability, and all vary in complexity and utility.
For instance:

* Signals allow programs to send simple notification events to other programs.

* Anonymous pipes allow threads and related processes that share file descriptors to
pass data, but generally rely on the Unix-like forking model for processes, which
is not universally portable.

* Named pipes are mapped to the system’s filesystem—they allow completely unre-
lated programs to converse, but are not available in Python on all platforms.

* Sockets map to system-wide port numbers—they similarly let us transfer data be-
tween arbitrary programs running on the same computer, but also between pro-
grams located on remote networked machines, and offer a more portable option.

While some of these can be used as communication devices by threads, too, their full
power becomes more evident when leveraged by separate processes which do not share
memory at large.

In this section, we explore directly managed pipes (both anonymous and named), as
well as signals. We also take a first look at sockets here, but largely as a preview; sockets
can be used for IPC on a single machine, but because the larger socket story also involves

their role in networking, we’ll save most of their details until the Internet part of this
book.

Other IPC tools are available to Python programmers (e.g., shared memory as provided
by the mmap module) but are not covered here for lack of space; search the Python
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manuals and website for more details on other IPC schemes if you’re looking for some-
thing more specific.

After this section, we’ll also study the multiprocessing module, which offers additional
and portable IPC options as part of its general process-launching API, including shared
memory, and pipes and queues of arbitrary pickled Python objects. For now, let’s study
traditional approaches first.

Anonymous Pipes

Pipes, a cross-program communication device, are implemented by your operating
system and made available in the Python standard library. Pipes are unidirectional
channels that work something like a shared memory buffer, but with an interface re-
sembling a simple file on each of two ends. In typical use, one program writes data on
one end of the pipe, and another reads that data on the other end. Each program sees
only its end of the pipes and processes it using normal Python file calls.

Pipes are much more within the operating system, though. For instance, calls to read
a pipe will normally block the caller until data becomes available (i.e., is sent by the
program on the other end) instead of returning an end-of-file indicator. Moreover, read
calls on a pipe always return the oldest data written to the pipe, resulting in a first-in-
first-out model—the first data written is the first to be read. Because of such properties,
pipes are also a way to synchronize the execution of independent programs.

Pipes come in two flavors—anonymous and named. Named pipes (often called fifos)
are represented by a file on your computer. Because named pipes are really external
files, the communicating processes need not be related at all; in fact, they can be inde-
pendently started programs.

By contrast, anonymous pipes exist only within processes and are typically used in
conjunction with process forks as a way to link parent and spawned child processes
within an application. Parent and child converse over shared pipe file descriptors, which
are inherited by spawned processes. Because threads run in the same process and share
all global memory in general, anonymous pipes apply to them as well.

Anonymous pipe basics

Since they are more traditional, let’s start with a look at anonymous pipes. To illustrate,
the script in Example 5-19 uses the os.fork call to make a copy of the calling process
as usual (we met forks earlier in this chapter). After forking, the original parent process
and its child copy speak through the two ends of a pipe created with os.pipe prior to
the fork. The os. pipe call returns a tuple of two file descriptors—the low-level file iden-
tifiers we met in Chapter 4—representing the input and output sides of the pipe. Be-
cause forked child processes get copies of their parents’ file descriptors, writing to the
pipe’s output descriptor in the child sends data back to the parent on the pipe created
before the child was spawned.
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Example 5-19. PP4E\System\Processes\pipel.py

import os, time

def child(pipeout):
722z = 0
while True:
time.sleep(zzz)
msg = ('Spam %03d' % zzz).encode()
os.write(pipeout, msg)
zzz = (zzz+1) % 5

make parent wait

pipes are binary bytes
send to parent

goto 0 after 4

H B B R

def parent():

pipein, pipeout = os.pipe() # make 2-ended pipe
if os.fork() == o: # copy this process
child(pipeout) # in copy, run child
else: # in parent, listen to pipe
while True:
line = os.read(pipein, 32) # blocks until data sent
print('Parent %d got [%s] at %s' % (os.getpid(), line, time.time()))
parent()

If you run this program on Linux, Cygwin, or another Unix-like platform (pipe is avail-
able on standard Windows Python, but fork is not), the parent process waits for the
child to send data on the pipe each time it calls os.read. It’s almost as if the child and
parentact as client and server here—the parent starts the child and waits for it to initiate
communication.” To simulate differing task durations, the child keeps the parent wait-
ing one second longer between messages with time.sleep calls, until the delay has
reached four seconds. When the zzz delay counter hits 005, it rolls back down to 000
and starts again:

[C:\...\PP4E\System\Processes]$ python pipe1.py
Parent 6716 got [b'Spam 000'] at 1267996104.53
Parent 6716 got [b'Spam 001'] at 1267996105.54
Parent 6716 got [b'Spam 002'] at 1267996107.55
Parent 6716 got [b'Spam 003'] at 1267996110.56
Parent 6716 got [b'Spam 004'] at 1267996114.57
Parent 6716 got [b'Spam 000'] at 1267996114.57
Parent 6716 got [b'Spam 001'] at 1267996115.59
Parent 6716 got [b'Spam 002'] at 1267996117.6
Parent 6716 got [b'Spam 003'] at 1267996120.61
Parent 6716 got [b'Spam 004'] at 1267996124.62
Parent 6716 got [b'Spam 000'] at 1267996124.62

#We will clarify the notions of “client” and “server” in the Internet programming part of this book. There,
we’ll communicate with sockets (which we’ll see later in this chapter are roughly like bidirectional pipes for
programs running both across networks and on the same machine), but the overall conversation model is
similar. Named pipes (fifos), described ahead, are also a better match to the client/server model because they
can be accessed by arbitrary, unrelated processes (no forks are required). But as we’ll see, the socket port
model is generally used by most Internet scripting protocols—email, for instance, is mostly just formatted
strings shipped over sockets between programs on standard port numbers reserved for the email protocol.
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Parent 6716 got [b'Spam 001'] at 1267996125.63
...etc.: Ctrl-C to exit...

Notice how the parent received a bytes string through the pipe. Raw pipes normally
deal in binary byte strings when their descriptors are used directly this way with the
descriptor-based file tools we met in Chapter 4 (as we saw there, descriptor read and
write tools in os always return and expect byte strings). That’s why we also have to
manually encode to bytes when writing in the child—the string formatting operation
is not available on bytes. As the next section shows, it’s also possible to wrap a pipe
descriptor in a text-mode file object, much as we did in the file examples in Chap-
ter 4, but that object simply performs encoding and decoding automatically on trans-
fers; it’s still bytes in the pipe.

Wrapping pipe descriptors in file objects

Ifyoulook closely at the preceding output, you’ll see that when the child’s delay counter
hits 004, the parent ends up reading two messages from the pipe at the same time; the
child wrote two distinct messages, but on some platforms or configurations (other than
that used here) they might be interleaved or processed close enough in time to be fetched
as a single unit by the parent. Really, the parent blindly asks to read, at most, 32 bytes
each time, but it gets back whatever text is available in the pipe, when it becomes
available.

To distinguish messages better, we can mandate a separator character in the pipe. An
end-of-line makes this easy, because we can wrap the pipe descriptor in a file object
with os.fdopen and rely on the file object’s readline method to scan up through the
next \n separator in the pipe. This also lets us leverage the more powerful tools of the
text-mode file object we met in Chapter 4. Example 5-20 implements this scheme for
the parent’s end of the pipe.

Example 5-20. PP4E\System\Processes\pipe2.py

# same as pipel.py, but wrap pipe input in stdio file object
# to read by line, and close unused pipe fds in both processes

import os, time

def child(pipeout):
zzz = 0
while True:
time.sleep(zzz)
msg = ('Spam %03d\n' % zzz).encode()
os.write(pipeout, msg)
zzz = (zzz+1) % 5

make parent wait

pipes are binary in 3.X
send to parent

roll too at 5

H H R R

def parent():

pipein, pipeout = os.pipe() # make 2-ended pipe

if os.fork() == o: # in child, write to pipe
os.close(pipein) # close input side here
child(pipeout)
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else: # in parent, listen to pipe

os.close(pipeout) # close output side here
pipein = os.fdopen(pipein) # make text mode input file object
while True:

line = pipein.readline()[:-1] # blocks until data sent

print('Parent %d got [%s] at %s' % (os.getpid(), line, time.time()))
parent()

This version has also been augmented to close the unused end of the pipe in each process
(e.g., after the fork, the parent process closes its copy of the output side of the pipe
written by the child); programs should close unused pipe ends in general. Running with
this new version reliably returns a single child message to the parent each time it reads
from the pipe, because they are separated with markers when written:
[C:\...\PP4E\System\Processes]$ python pipe2.py
Parent 8204 got [Spam 000] at 1267997789.33
Parent 8204 got [Spam 001] at 1267997790.03
Parent 8204 got [Spam 002] at 1267997792.05
Parent 8204 got [Spam 003] at 1267997795.06
Parent 8204 got [Spam 004] at 1267997799.07
Parent 8204 got [Spam 000] at 1267997799.07
Parent 8204 got [Spam 001] at 1267997800.08
Parent 8204 got [Spam 002] at 1267997802.09
Parent 8204 got [Spam 003] at 1267997805.1
Parent 8204 got [Spam 004] at 1267997809.11
Parent 8204 got [Spam 000] at 1267997809.11
Parent 8204 got [Spam 001] at 1267997810.13
...etc.: Ctrl-C to exit...

Notice that this version’s reads also return a text data str object now, per the default
r text mode for os.fdopen. As mentioned, pipes normally deal in binary byte strings
when their descriptors are used directly with os file tools, but wrapping in text-mode
files allows us to use str strings to represent text data instead of bytes. In this example,
bytes are decoded to str when read by the parent; using os.fdopen and text mode in
the child would allow us to avoid its manual encoding call, but the file object would
encode the str data anyhow (though the encoding is trivial for ASCII bytes like those
used here). As for simple files, the best mode for processing pipe data in is determined
by its nature.

Anonymous pipes and threads

Although the os.fork call required by the prior section’s examples isn’t available on
standard Windows Python, os.pipe is. Because threads all run in the same process and
share file descriptors (and global memory in general), this makes anonymous pipes
usable as a communication and synchronization device for threads, too. This is an
arguably lower-level mechanism than queues or shared names and objects, but it pro-
vides an additional IPC option for threads. Example 5-21, for instance, demonstrates
the same type of pipe-based communication occurring between threads instead of
processes.
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Example 5-21. PP4E\System\Processes\pipe-thread.py

# anonymous pipes and threads, not processes; this version works on Windows
import os, time, threading

def child(pipeout):

7222 = 0
while True:
time.sleep(zzz) # make parent wait
msg = ('Spam %03d' % zzz).encode() # pipes are binary bytes
os.write(pipeout, msg) # send to parent
22z = (zzz+1) % 5 # goto 0 after 4

def parent(pipein):
while True:
line = os.read(pipein, 32) # blocks until data sent
print('Parent %d got [%s] at %s' % (os.getpid(), line, time.time()))

pipein, pipeout = os.pipe()
threading.Thread(target=child, args=(pipeout,)).start()
parent(pipein)

Since threads work on standard Windows Python, this script does too. The output is
similar here, but the speakers are in-process threads, not processes (note that because
of its simple-minded infinite loops, at least one of its threads may not die on a Ctrl-C—
on Windows you may need to use Task Manager to kill the python.exe process running
this script or close its window to exit):

C:\...\PP4E\System\Processes> pipe-thread.py

Parent 8876 got [b'Spam 000'] at 1268579215.71

Parent 8876 got [b'Spam 001'] at 1268579216.73

Parent 8876 got [b'Spam 002'] at 1268579218.74

Parent 8876 got [b'Spam 003'] at 1268579221.75

Parent 8876 got [b'Spam 004'] at 1268579225.76

Parent 8876 got [b'Spam 000'] at 1268579225.76

Parent 8876 got [b'Spam 001'] at 1268579226.77

Parent 8876 got [b'Spam 002'] at 1268579228.79

...etc.: Ctrl-C or Task Manager to exit...

Bidirectional IPC with anonymous pipes

Pipes normally let data flow in only one direction—one side is input, one is output.
What if you need your programs to talk back and forth, though? For example, one
program might send another a request for information and then wait for that informa-
tion to be sent back. A single pipe can’t generally handle such bidirectional conversa-
tions, but two pipes can. One pipe can be used to pass requests to a program and
another can be used to ship replies back to the requestor.

This really does have real-world applications. For instance, I once added a GUI interface
to a command-line debugger for a C-like programming language by connecting two
processes with pipes this way. The GUI ran as a separate process that constructed and
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sent commands to the non-GUI debugger’s input stream pipe and parsed the results
that showed up in the debugger’s output stream pipe. In effect, the GUI acted like a
programmer typing commands at a keyboard and a client to the debugger server. More
generally, by spawning command-line programs with streams attached by pipes, sys-
tems can add new interfaces to legacy programs. In fact, we’ll see a simple example of
this sort of GUI program structure in Chapter 10.

The module in Example 5-22 demonstrates one way to apply this idea to link the input
and output streams of two programs. Its spawn function forks a new child program and

connects the input and output streams of the parent to the output and input streams
of the child. That is:

* When the parent reads from its standard input, it is reading text sent to the child’s
standard output.

* When the parent writes to its standard output, it is sending data to the child’s
standard input.

The net effect is that the two independent programs communicate by speaking over
their standard streams.

Example 5-22. PP4E\System\Processes\pipes.py
spawn a child process/program, connect my stdin/stdout to child process's

stdout/stdin--my reads and writes map to output and input streams of the
spawned program; much like tying together streams with subprocess module;

import os, sys

def spawn(prog, *args): # pass progname, cmdline args
stdinFd = sys.stdin.fileno() # get descriptors for streams
stdoutFd = sys.stdout.fileno() # normally stdin=0, stdout=1

parentStdin, childStdout = os.pipe() # make two IPC pipe channels

childStdin, parentStdout = os.pipe() # pipe returns (inputfd, outoutfd)

pid = os.fork() # make a copy of this process

if pid:
os.close(childStdout)
os.close(childStdin)
os.dup2(parentStdin, stdinFd)
os.dup2(parentStdout, stdoutFd)

else:
os.close(parentStdin)
os.close(parentStdout)
os.dup2(childStdin, stdinFd)
os.dup2(childStdout, stdoutFd)
args = (prog,) + args
os.execvp(prog, args) new program in this process
assert False, 'execvp failed!' # os.exec call never returns here

in parent process after fork:
close child ends in parent

my sys.stdin copy = pipei1[0]
my sys.stdout copy = pipe2[1]

o o

in child process after fork:
close parent ends in child

my sys.stdin copy = pipe2[0]
my sys.stdout copy = pipe1[1]

H H R H

=

if __name__ == "'_main_ ':

Interprocess Communication | 229



mypid = os.getpid()
spawn('python', 'pipes-testchild.py', 'spam') # fork child program

print('Hello 1 from parent', mypid) # to child's stdin
sys.stdout.flush() # subvert stdio buffering
reply = input() # from child's stdout

sys.stderr.write('Parent got: "%s"\n' % reply) # stderr not tied to pipe!

print('Hello 2 from parent', mypid)
sys.stdout.flush()

reply = sys.stdin.readline()
sys.stderr.write('Parent got: "%s"\n' % reply[:-1])

The spawn function in this module does not work on standard Windows Python (re-
member that fork isn’t yet available there today). In fact, most of the calls in this module
map straight to Unix system calls (and may be arbitrarily terrifying at first glance to
non-Unix developers!). We’ve already met some of these (e.g., os.fork), but much of
this code depends on Unix concepts we don’t have time to address well in this text.
But in simple terms, here is a brief summary of the system calls demonstrated in this
code:

os.fork
Copies the calling process as usual and returns the child’s process ID in the parent
process only.

0S.execvp
Overlays a new program in the calling process; it’s just like the os.execlp used
earlier but takes a tuple or list of command-line argument strings (collected with
the *args form in the function header).

0s.pipe
Returns a tuple of file descriptors representing the input and output ends of a pipe,
as in earlier examples.

os.close(fd)
Closes the descriptor-based file fd.

os.dup2(fd1,fd2)
Copies all system information associated with the file named by the file descriptor
fd1 to the file named by fd2.

In terms of connecting standard streams, os.dup2 is the real nitty-gritty here. For ex-
ample, the call os.dup2(parentStdin,stdinFd) essentially assigns the parent process’s
stdin file to the input end of one of the two pipes created; all stdin reads will henceforth
come from the pipe. By connecting the other end of this pipe to the child process’s copy
of the stdout stream file with os.dup2(childStdout, stdoutFd), text written by the child
to its sdtdout winds up being routed through the pipe to the parent’s stdin stream. The
effect is reminiscent of the way we tied together streams with the subprocess module
in Chapter 3, but this script is more low-level and less portable.
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To test this utility, the self-test code at the end of the file spawns the program shown
in Example 5-23 in a child process and reads and writes standard streams to converse
with it over two pipes.

Example 5-23. PP4E\System\Processes\pipes-testchild.py
import os, time, sys
mypid = os.getpid()
parentpid = os.getppid()
sys.stderr.write('Child %d of %d got arg: "%s"\n' %
(mypid, parentpid, sys.argv[1]))
for i in range(2):
time.sleep(3) # make parent process wait by sleeping here
recv = input() # stdin tied to pipe: comes from parent's stdout
time.sleep(3)
send = 'Child %d got: [%s]"' % (mypid, recv)
print(send) # stdout tied to pipe: goes to parent's stdin
sys.stdout.flush() # make sure it's sent now or else process blocks

The following is our test in action on Cygwin (it’s similar other Unix-like platforms like
Linux); its output is not incredibly impressive to read, but it represents two programs
running independently and shipping data back and forth through a pipe device man-
aged by the operating system. This is even more like a client/server model (if you imag-
ine the child as the server, responding to requests sent from the parent). The text in
square brackets in this output went from the parent process to the child and back to
the parent again, all through pipes connected to standard streams:

[C:\...\PP4E\System\Processes]$ python pipes.py

Child 9228 of 9096 got arg: "spam”

Parent got: "Child 9228 got: [Hello 1 from parent 9096]"
Parent got: "Child 9228 got: [Hello 2 from parent 9096]"

Output stream buffering revisited: Deadlocks and flushes

The two processes of the prior section’s example engage in a simple dialog, but it’s
already enough to illustrate some of the dangers lurking in cross-program communi-
cations. First of all, notice that both programs need to write to stderr to display a
message; their stdout streams are tied to the other program’s input stream. Because
processes share file descriptors, stderr is the same in both parent and child, so status
messages show up in the same place.

More subtly, note that both parent and child call sys. stdout. flush after they print text
to the output stream. Input requests on pipes normally block the caller if no data is
available, but it seems that this shouldn’t be a problem in our example because there
are as many writes as there are reads on the other side of the pipe. By default, though,
sys.stdout is buffered in this context, so the printed text may notactually be transmitted
until some time in the future (when the output buffers fill up). In fact, if the flush calls
are not made, both processes may get stuck on some platforms waiting for input from
the other—input that is sitting in a buffer and is never flushed out over the pipe. They
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wind up in a deadlock state, both blocked on input calls waiting for events that never
oceur.

Technically, by default stdout is just line-buffered when connected to a terminal, but
it is fully buffered when connected to other devices such as files, sockets, and the pipes
used here. This is why you see a script’s printed text in a shell window immediately as
it is produced, but not until the process exits or its buffer fills when its output stream
is connected to something else.

This output buffering is really a function of the system libraries used to access pipes,
not of the pipes themselves (pipes do queue up output data, but they never hide it from
readers!). In fact, it appears to occur in this example only because we copy the pipe’s
information over to sys.stdout, a built-in file object that uses stream buffering by de-
fault. However, such anomalies can also occur when using other cross-process tools.

In general terms, if your programs engage in a two-way dialog like this, there are a
variety of ways to avoid buffering-related deadlock problems:

* Flushes: As demonstrated in Examples 5-22 and 5-23, manually flushing output
pipe streams by calling the file object flush method is an easy way to force buffers
to be cleared. Use sys.stdout.flush for the output stream used by print.

* Arguments: As introduced earlier in this chapter, the -u Python command-line flag
turns off full buffering for the sys. stdout stream in Python programs. Setting your
PYTHONUNBUFFERED environment variable to a nonempty value is equivalent to pass-
ing this flag but applies to every program run.

* Open modes: It’s possible to use pipes themselves in unbuffered mode. Either use
low-level os module calls to read and write pipe descriptors directly, or pass a buffer
size argument of 0 (for unbuffered) or 1 (for line-buffered) to os.fdopen to disable
buffering in the file object used to wrap the descriptor. You can use open arguments
the same way to control buffering for output to fifo files (described in the next
section). Note that in Python 3.X, fully unbuffered mode is allowed only for binary
mode files, not text.

* Command pipes: As mentioned earlier in this chapter, you can similarly specify
buffering mode arguments for command-line pipes when they are created by
os.popen and subprocess.Popen, but this pertains to the caller’s end of the pipe, not
those of the spawned program. Hence it cannot prevent delayed outputs from the
latter, but can be used for text sent to another program’s input pipe.

* Sockets: As we’ll see later, the socket.makefile call accepts a similar buffering mode
argument for sockets (described later in this chapter and book), but in Python 3.X
this call requires buffering for text-mode access and appears to not support line-
buffered mode (more on this on Chapter 12).

* Tools: For more complex tasks, we can also use higher-level tools that essentially
fool a program into believing it is connected to a terminal. These address programs
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not written in Python, for which neither manual flush calls nor -u are an option.
See “More on Stream Buffering: pty and Pexpect” on page 233.

Thread can avoid blocking a main GUI, too, but really just delegate the problem (the
spawned thread will still be deadlocked). Of the options listed, the first two—manual
flushes and command-line arguments—are often the simplest solutions. In fact, be-
cause it is so useful, the second technique listed above merits a few more words. Try
this: comment-out all the sys.stdout.flush calls in Examples 5-22 and 5-23 (the files
pipes.py and pipes-testchild.py) and change the parent’s spawn call in pipes.py to this
(i.e., add a -u command-line argument):

spawn('python', '-u', 'pipes-testchild.py', 'spam')

Then start the program with a command line like this: python -u pipes.py. It will work
as it did with the manual stdout flush calls, because stdout will be operating in unbuf-
fered mode in both parent and child.

We'll revisit the effects of unbuffered output streams in Chapter 10, where we’ll code
a simple GUI that displays the output of a non-GUI program by reading it over both a
nonblocking socket and a pipe in a thread. We’ll explore the topic again in more depth
in Chapter 12, where we will redirect standard streams to sockets in more general ways.
Deadlock in general, though, is a bigger problem than we have space to address fully
here. On the other hand, if you know enough that you want to do IPC in Python, you’re
probably already a veteran of the deadlock wars.

Anonymous pipes allow related tasks to communicate but are not directly suited for
independently launched programs. To allow the latter group to converse, we need to
move on to the next section and explore devices that have broader visibility.

More on Stream Buffering: pty and Pexpect

On Unix-like platforms, you may also be able to use the Python pty standard library
module to force another program’s standard output to be unbuffered, especially if it’s
not a Python program and you cannot change its code.

Technically, default buffering for stdout in other programs is determined outside Py-
thon by whether the underlying file descriptor refers to a terminal. This occurs in the
stdio file system library and cannot be controlled by the spawning program. In general,
output to terminals is line buffered, and output to nonterminals (including files, pipes,
and sockets) is fully buffered. This policy is used for efficiency. Files and streams created
within a Python script follow the same defaults, but you can specify buffering policies
in Python’s file creation tools.

The pty module essentially fools the spawned program into thinking it is connected to
a terminal so that only one line is buffered for stdout. The net effect is that each newline
flushes the prior line—typical of interactive programs, and what you need if you wish
to grab each piece of the printed output as it is produced.

Note, however, that the pty module is not required for this role when spawning Python
scripts with pipes: simply use the -u Python command-line flag, pass line-buffered mode
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arguments to file creation tools, or manually call sys.stdout.flush() in the spawned
program. The pty module is also not available on all Python platforms today (most
notably, it runs on Cygwin but not the standard Windows Python).

The Pexpect package, a pure-Python equivalent of the Unix expect program, uses pty
to provide additional functionality and to handle interactions that bypass standard
streams (e.g., password inputs). See the Python library manual for more on pty, and
search the Web for Pexpect.

Named Pipes (Fifos)

On some platforms, it is also possible to create a long-lived pipe that exists as a real
named file in the filesystem. Such files are called named pipes (or, sometimes, fifos)
because they behave just like the pipes created by the previous section’s programs.
Because fifos are associated with a real file on your computer, though, they are external
to any particular program—they do not rely on memory shared between tasks, and so
they can be used as an IPC mechanism for threads, processes, and independently
launched programs.

Once a named pipe file is created, clients open it by name and read and write data using
normal file operations. Fifos are unidirectional streams. In typical operation, a server
program reads data from the fifo, and one or more client programs write data to it. In
addition, a set of two fifos can be used to implement bidirectional communication just
as we did for anonymous pipes in the prior section.

Because fifos reside in the filesystem, they are longer-lived than in-process anonymous
pipes and can be accessed by programs started independently. The unnamed, in-
process pipe examples thus far depend on the fact that file descriptors (including pipes)
are copied to child processes’ memory. That makes it difficult to use anonymous pipes
to connect programs started independently. With fifos, pipes are accessed instead by
a filename visible to all programs running on the computer, regardless of any parent/
child process relationships. In fact, like normal files, fifos typically outlive the programs
that access them. Unlike normal files, though, the operating system synchronizes fifo
access, making them ideal for IPC.

Because of their distinctions, fifo pipes are better suited as general IPC mechanisms for
independent client and server programs. For instance, a perpetually running server
program may create and listen for requests on a fifo that can be accessed later by arbi-
trary clients not forked by the server. In a sense, fifos are an alternative to the socket
portinterface we’ll meet in the next section. Unlike sockets, though, fifos do not directly
support remote network connections, are not available in standard Windows Python
today, and are accessed using the standard file interface instead of the more unique
socket port numbers and calls we’ll study later.
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Named pipe basics

In Python, named pipe files are created with the os.mkfifo call, which is available today
on Unix-like platforms, including Cygwin’s Python on Windows, but is not currently
available in standard Windows Python. This call creates only the external file, though;
to send and receive data through a fifo, it must be opened and processed as if it were a
standard file.

To illustrate, Example 5-24 is a derivation of the pipe2.py script listed in Exam-
ple 5-20, but rewritten here to use fifos rather than anonymous pipes. Much like
pipe2.py, this script opens the fifo using os.open in the child for low-level byte string
access, but with the open built-in in the parent to treat the pipe as text; in general, either
end may use either technique to treat the pipe’s data as bytes or text.

Example 5-24. PP4E\System\Processes\pipefifo.py

nnn

named pipes; os.mkfifo is not available on Windows (without Cygwin);
there is no reason to fork here, since fifo file pipes are external
to processes--shared fds in parent/child processes are irrelevent;

nnn

import os, time, sys
fifoname = '/tmp/pipefifo’ # must open same name

def child():
pipeout = os.open(fifoname, o0s.0 WRONLY) # open fifo pipe file as fd
7272z = 0
while True:
time.sleep(zzz)
msg = ('Spam %03d\n' % zzz).encode() # binary as opened here
os.write(pipeout, msg)
zzz = (zzz+1) % 5

def parent():

pipein = open(fifoname, 'r') # open fifo as text file object
while True:
line = pipein.readline()[:-1] # blocks until data sent

print('Parent %d got "%s" at %s' % (os.getpid(), line, time.time()))

if name_ == "' main_':
if not os.path.exists(fifoname):
os.mkfifo(fifoname) # create a named pipe file
if len(sys.argv) == 1:
parent() # run as parent if no args
else: # else run as child process
child()

Because the fifo exists independently of both parent and child, there’s no reason to fork
here. The child may be started independently of the parent as long as it opens a fifo file
by the same name. Here, for instance, on Cygwin the parent is started in one shell
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window and then the child is started in another. Messages start appearing in the parent
window only after the child is started and begins writing messages onto the fifo file:

[C:\...\PP4E\System\Processes] $ python pipefifo.py # parent window

Parent 8324 got "Spam 000" at 1268003696.07

Parent 8324 got "Spam 001" at 1268003697.06

Parent 8324 got "Spam 002" at 1268003699.07

Parent 8324 got "Spam 003" at 1268003702.08

Parent 8324 got "Spam 004" at 1268003706.09

Parent 8324 got "Spam 000" at 1268003706.09

Parent 8324 got "Spam 001" at 1268003707.11

Parent 8324 got "Spam 002" at 1268003709.12

Parent 8324 got "Spam 003" at 1268003712.13

Parent 8324 got "Spam 004" at 1268003716.14

Parent 8324 got "Spam 000" at 1268003716.14

Parent 8324 got "Spam 001" at 1268003717.15

...etc: Ctrl-C to exit...

[C:\...\PP4E\System\Processes]$ file /tmp/pipefifo # child window
/tmp/pipefifo: fifo (named pipe)

[C:\...\PP4E\System\Processes]$ python pipefifo.py -child
...Ctrl-C to exit...

Named pipe use cases

By mapping communication points to a file system entity accessible to all programs run
on a machine, fifos can address a broad range of IPC goals on platforms where they are
supported. For instance, although this section’s example runs independent programs,
named pipes can also be used as an IPC device by both in-process threads and directly
forked related processes, much as we saw for anonymous pipes earlier.

By also supporting unrelated programs, though, fifo files are more widely applicable to
general client/server models. For example, named pipes can make the GUI and
command-line debugger integration I described earlier for anonymous pipes even more
flexible—Dby using fifo files to connect the GUI to the non-GUI debugger’s streams, the
GUI could be started independently when needed.

Sockets provide similar functionality but also buy us both inherent network awareness
and broader portability to Windows—as the next section explains.

Sockets: A First Look

Sockets, implemented by the Python socket module, are a more general IPC device
than the pipes we’ve seen so far. Sockets let us transfer data between programs running
on the same computer, as well as programs located on remote networked machines.
When used as an IPC mechanism on the same machine, programs connect to sockets
by a machine-global port number and transfer data. When used as a networking con-
nection, programs provide both a machine name and port number to transfer data to
a remotely-running program.
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Socket basics

Although sockets are one of the most commonly used IPC tools, it’s impossible to fully
grasp their API without also seeing its role in networking. Because of that, we’ll defer
most of our socket coverage until we can explore their use in network scripting in
Chapter 12. This section provides a brief introduction and preview, so you can compare
with the prior section’s named pipes (a.k.a. fifos). In short:

* Like fifos, sockets are global across a machine; they do not require shared memory
among threads or processes, and are thus applicable to independent programs.

* Unlike fifos, sockets are identified by port number, not filesystem path name; they
employ a very different nonfile API, though they can be wrapped in a file-like object;
and they are more portable: they work on nearly every Python platform, including
standard Windows Python.

In addition, sockets support networking roles that go beyond both IPC and this chap-
ter’s scope. To illustrate the basics, though, Example 5-25 launches a server and 5
clients in threads running in parallel on the same machine, to communicate over a
socket—Dbecause all threads connect to the same port, the server consumes the data
added by each of the clients.

Example 5-25. PP4E\System\Processes\socket_preview.py

nnn

sockets for cross-task communication: start threads to communicate over sockets;
independent programs can too, because sockets are system-wide, much like fifos;
see the GUI and Internet parts of the book for more realistic socket use cases;
some socket servers may also need to talk to clients in threads or processes;
sockets pass byte strings, but can be pickled objects or encoded Unicode text;
caveat: prints in threads may need to be synchronized if their output overlaps;

from socket import socket, AF_INET, SOCK STREAM # portable socket api

port = 50008 # port number identifies socket on machine
host = 'localhost’ # server and client run on same local machine here

def server():

sock = socket(AF_INET, SOCK STREAM) # ip addresses tcp connection
sock.bind(('", port)) # bind to port on this machine
sock.listen(5) # allow up to 5 pending clients
while True:
conn, addr = sock.accept() # wait for client to connect
data = conn.recv(1024) # read bytes data from this client
reply = 'server got: [%s]' % data # conn is a new connected socket
conn.send(reply.encode()) # send bytes reply back to client
def client(name):
sock = socket(AF_INET, SOCK_STREAM)
sock.connect((host, port)) # connect to a socket port
sock.send(name.encode()) # send bytes data to listener
reply = sock.recv(1024) # receive bytes data from listener
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sock.close() # up to 1024 bytes in message
print('client got: [%s]' % reply)

if _name__ == '_main__
from threading import Thread
sthread = Thread(target=server)
sthread.daemon = True # don't wait for server thread
sthread.start() # do wait for children to exit
for i in range(5):
Thread(target=client, args=('client%s' % i,)).start()

Study this script’s code and comments to see how the socket objects’ methods are used
to transfer data. In a nutshell, with this type of socket the server accepts a client con-
nection, which by default blocks until a client requests service, and returns a new socket
connected to the client. Once connected, the client and server transfer byte strings by
using send and receive calls instead of writes and reads, though as we’ll see later in the
book, sockets can be wrapped in file objects much as we did earlier for pipe descriptors.
Also like pipe descriptors, unwrapped sockets deal in binary bytes strings, not text
str; that’s why string formatting results are manually encoded again here.

Here is this script’s output on Windows:
C:\...\PP4E\System\Processes> socket_preview.py
client got: [b"server got: [b'client1']"]
client got: [b"server got: [b'client3']"]
client got: [b"server got: [b'client4']"]
client got: [b"server got: [b'client2']"]
client got: [b"server got: [b'cliento']"]

This output isn’t much to look at, but each line reflects data sent from client to server,

and then back again: the server receives a bytes string from a connected client and

echoes it back in a larger reply string. Because all threads run in parallel, the order in

which the clients are served is random on this machine.

Sockets and independent programs

Although sockets work for threads, the shared memory model of threads often allows
them to employ simpler communication devices such as shared names and objects and
queues. Sockets tend to shine brighter when used for IPC by separate processes and
independently launched programs. Example 5-26, for instance, reuses the server
and client functions of the prior example, but runs them in both processes and threads
of independently launched programs.

Example 5-26. PP4E\System\Processes\socket-preview-progs.py
same socket, but talk between independent programs too, not just threads;

server here runs in a process and serves both process and thread clients;
sockets are machine-global, much like fifos: don't require shared memory

nnn

from socket preview import server, client # both use same port number
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import sys, os
from threading import Thread

mode = int(sys.argv[1])

if mode == 1: # run server in this process
server()

elif mode == 2: # run client in this process
client('client:process=%s' % os.getpid())

else: # run 5 client threads in process

for i in range(5):
Thread(target=client, args=('client:thread=%s' % 1i,)).start()

Let’s run this script on Windows, too (again, this portability is a major advantage of
sockets). First, start the server in a process as an independently launched program in
its own window; this process runs perpetually waiting for clients to request connections
(and as for our prior pipe example you may need to use Task Manager or a window
close to kill the server process eventually):

C:\...\PP4E\System\Processes> socket-preview-progs.py 1
Now, in another window, run a few clients in both processes and thread, by launching

them as independent programs—using 2 as the command-line argument runs a single
client process, but 3 spawns five threads to converse with the server on parallel:
C:\...\PP4E\System\Processes> socket-preview-progs.py 2
client got: [b"server got: [b'client:process=7384"']"]

C:\...\PP4E\System\Processes> socket-preview-progs.py 2
client got: [b"server got: [b'client:process=7604"']"]

C:\...\PP4E\System\Processes> socket-preview-progs.py 3
client got: [b"server got: [b'client:thread=1']"]

client got: [b"server got: [b'client:thread=2']"]
client got: [b"server got: [b'client:thread=0']"]
client got: [b"server got: [b'client:thread=3']"]
client got: [b"server got: [b'client:thread=4']"]

C:\..\PP4E\System\Processes> socket-preview-progs.py 3
client got: [b"server got: [b'client:thread=3']"]

client got: [b"server got: [b'client:thread=1']"]
client got: [b"server got: [b'client:thread=2']"]
client got: [b"server got: [b'client:thread=4']"]
client got: [b"server got: [b'client:thread=0']"]

C:\...\PP4E\System\Processes> socket-preview-progs.py 2
client got: [b"server got: [b'client:process=6428"]"]

Socket use cases

This section’s examples illustrate the basic IPC role of sockets, but this only hints at
their full utility. Despite their seemingly limited byte string nature, higher-order use
cases for sockets are not difficult to imagine. With a little extra work, for instance:
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* Arbitrary Python objects like lists and dictionaries (or at least copies of them) can
be transferred over sockets, too, by shipping the serialized byte strings produced
by Python’s pickle module introduced in Chapter 1 and covered in full in
Chapter 17.

* Aswe’ll see in Chapter 10, the printed output of a simple script can be redirected
to a GUI window, by connecting the script’s output stream to a socket on which
a GUI is listening in nonblocking mode.

* Programs that fetch arbitrary text off the Web might read it as byte strings over
sockets, but manually decode it using encoding names embedded in content-type
headers or tags in the data itself.

* In fact, the entire Internet can be seen as a socket use case—as we’ll see in Chap-
ter 12, at the bottom, email, FTP, and web pages are largely just formatted byte
string messages shipped over sockets.

Plus any other context in which programs exchange data—sockets are a general, port-
able, and flexible tool. For instance, they would provide the same utility as fifos for the
GUI/debugger example used earlier, but would also work in Python on Windows and
would even allow the GUI to connect to a debugger running on a different computer
altogether. As such, they are seen by many as a more powerful IPC tool.

Again, you should consider this section just a preview; because the grander socket story
also entails networking concepts, we’ll defer a more in-depth look at the socket API
until Chapter 12. We'll also see sockets again briefly in Chapter 10 in the GUI stream
redirection use case listed above, and we’ll explore a variety of additional socket use
cases in the Internet part of this book. In Part IV, for instance, we’ll use sockets to
transfer entire files and write more robust socket servers that spawn threads or processes
to converse with clients to avoid denying connections. For the purposes of this chapter,
let’s move on to one last traditional IPC tool—the signal.

Signals

For lack of a better analogy, signals are a way to poke a stick at a process. Programs
generate signals to trigger a handler for that signal in another process. The operating
system pokes, too—some signals are generated on unusual system events and may kill
the program if not handled. If this sounds a little like raising exceptions in Python, it
should; signals are software-generated events and the cross-process analog of excep-
tions. Unlike exceptions, though, signals are identified by number, are not stacked, and
are really an asynchronous event mechanism outside the scope of the Python interpreter
controlled by the operating system.

In order to make signals available to scripts, Python provides a signal module that
allows Python programs to register Python functions as handlers for signal events. This
module is available on both Unix-like platforms and Windows (though the Windows
version may define fewer kinds of signals to be caught). To illustrate the basic signal
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interface, the script in Example 5-27 installs a Python handler function for the signal
number passed in as a command-line argument.

Example 5-27. PP4E\System\Processes\signall.py

nun

catch signals in Python; pass signal number N as a command-line arg,
use a "kill -N pid" shell command to send this process a signal; most
signal handlers restored by Python after caught (see network scripting
chapter for SIGCHLD details); on Windows, signal module is available,
but it defines only a few signal types there, and os.kill is missing;

nnn

import sys, signal, time

def now(): return time.ctime(time.time()) # current time string
def onSignal(signum, stackframe): # python signal handler
print('Got signal', signum, 'at', now()) # most handlers stay in effect

signum = int(sys.argv[1])
signal.signal(signum, onSignal) # install signal handler
while True: signal.pause() # wait for signals (or: pass)

There are only two signal module calls at work here:

signal.signal

Takes a signal number and function object and installs that function to handle that
signal number when it is raised. Python automatically restores most signal handlers
when signals occur, so there is no need to recall this function within the signal
handler itself to reregister the handler. That is, except for SIGCHLD, a signal handler
remains installed until explicitly reset (e.g., by setting the handler to SIG DFL to
restore default behavior or to SIG_IGN to ignore the signal). SIGCHLD behavior is
platform specific.

signal.pause
Makes the process sleep until the next signal is caught. A time.sleep call is similar
but doesn’t work with signals on my Linux box; it generates an interrupted system
call error. A busywhile True: pass loop here would pause the script, too, but may
squander CPU resources.

Here is what this script looks like running on Cygwin on Windows (it works the same
on other Unix-like platforms like Linux): a signal number to watch for (12) is passed
in on the command line, and the program is made to run in the background with an
& shell operator (available in most Unix-like shells):

[C:\...\PP4E\System\Processes]$ python signali.py 12 &

[1] 8224
$ ps
PID PPID PGID WINPID TTY UID STIME COMMAND
I 8944 1 8944 8944 con 1004 18:09:54 /usr/bin/bash
8224 7336 8224 10020 con 1004 18:26:47 /usr/local/bin/python
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8380 7336 8380 428 con 1004 18:26:50 /usr/bin/ps

$ kill -12 8224
Got signal 12 at Sun Mar 7 18:27:28 2010

$ kill -12 8224
Got signal 12 at Sun Mar 7 18:27:30 2010

$ kill -9 8224
[1]+ Killed python signali.py 12

Inputs and outputs can be a bit jumbled here because the process prints to the same
screen used to type new shell commands. To send the program a signal, the kill shell
command takes a signal number and a process ID to be signaled (8224); every time a
new kill command sends a signal, the process replies with a message generated by a
Python signal handler function. Signal 9 always kills the process altogether.

The signal module also exports a signal.alarm function for scheduling a SIGALRM signal
to occur at some number of seconds in the future. To trigger and catch timeouts, set
the alarm and install a SIGALRM handler as shown in Example 5-28.

Example 5-28. PP4E\System\Processes\signal2.py

nnn

set and catch alarm timeout signals in Python; time.sleep doesn't play
well with alarm (or signal in general in my Linux PC), so we call
signal.pause here to do nothing until a signal is received;

nnn

import sys, signal, time
def now(): return time.asctime()

def onSignal(signum, stackframe): # python signal handler
print('Got alarm', signum, 'at’, now()) # most handlers stay in effect
while True:
print('Setting at', now())
signal.signal(signal.SIGALRM, onSignal) # install signal handler
signal.alarm(5) # do signal in 5 seconds
signal.pause() # wait for signals

Running this script on Cygwin on Windows causes its onSignal handler function to be
invoked every five seconds:

[C:\...\PP4E\System\Processes]$ python signal2.py
Setting at Sun Mar 7 18:37:10 2010

Got alarm 14 at Sun Mar 7 18:37:15 2010

Setting at Sun Mar 7 18:37:15 2010

Got alarm 14 at Sun Mar 7 18:37:20 2010

Setting at Sun Mar 7 18:37:20 2010

Got alarm 14 at Sun Mar 7 18:37:25 2010

Setting at Sun Mar 7 18:37:25 2010

Got alarm 14 at Sun Mar 7 18:37:30 2010
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Setting at Sun Mar 7 18:37:30 2010
...Ctrl-C to exit...

Generally speaking, signals must be used with cautions not made obvious by the ex-
amples we’ve just seen. For instance, some system calls don’t react well to being inter-
rupted by signals, and only the main thread can install signal handlers and respond to
signals in a multithreaded program.

When used well, though, signals provide an event-based communication mechanism.
They are less powerful than data streams such as pipes, but are sufficient in situations
in which you just need to tell a program that something important has occurred and
don’t need to pass along any details about the event itself. Signals are sometimes also
combined with other IPC tools. For example, an initial signal may inform a program
that a client wishes to communicate over a named pipe—the equivalent of tapping
someone’s shoulder to get their attention before speaking. Most platforms reserve one
or more SIGUSR signal numbers for user-defined events of this sort. Such an integration
structure is sometimes an alternative to running a blocking input call in a spawned

thread.

See also the os.kill(pid, sig) call for sending signals to known processes from within
a Python script on Unix-like platforms, much like the kill shell command used earlier;
the required process ID can be obtained from the os.fork call’s child process ID return
value or from other interfaces. Like os. fork, this call is also available in Cygwin Python,
but not in standard Windows Python. Also watch for the discussion about using signal
handlers to clean up “zombie” processes in Chapter 12.

The multiprocessing Module

Now that you know about IPC alternatives and have had a chance to explore processes,
threads, and both process nonportability and thread GIL limitations, it turns out that
there is another alternative, which aims to provide just the best of both worlds. As
mentioned earlier, Python’s standard library multiprocessing module package allows
scripts to spawn processes using an API very similar to the threading module.

This relatively new package works on both Unix and Windows, unlike low-level process
forks. It supports a process spawning model which is largely platform-neutral, and
provides tools for related goals, such as IPC, including locks, pipes, and queues. In
addition, because it uses processes instead of threads to run code in parallel, it effec-
tively works around the limitations of the thread GIL. Hence, multiprocessing allows
the programmer to leverage the capacity of multiple processors for parallel tasks, while
retaining much of the simplicity and portability of the threading model.

Why multiprocessing?

So why learn yet another parallel processing paradigm and toolkit, when we already
have the threads, processes, and IPC tools like sockets, pipes, and thread queues that
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we've already studied? Before we get into the details, I want to begin with a few words
about why you may (or may not) care about this package. In more specific terms,
although this module’s performance may not compete with that of pure threads or
process forks for some applications, this module offers a compelling solution for many:

* Compared to raw process forks, you gain cross-platform portability and powerful
IPC tools.

* Compared to threads, you essentially trade some potential and platform-
dependent extra task start-up time for the ability to run tasks in truly parallel fash-
ion on multi-core or multi-CPU machines.

On the other hand, this module imposes some constraints and tradeoffs that threads
do not:

* Since objects are copied across process boundaries, shared mutable state does not
work as it does for threads—changes in one process are not generally noticed in
the other. Really, freely shared state may be the most compelling reason to use
threads; its absence in this module may prove limiting in some threading contexts.

* Because this module requires pickleability for both its processes on Windows, as
well as some of its IPC tools in general, some coding paradigms are difficult or
nonportable—especially if they use bound methods or pass unpickleable objects
such as sockets to spawned processes.

Forinstance, common coding patterns with lambda that work for the threading module
cannot be used as process target callables in this module on Windows, because they
cannot be pickled. Similarly, because bound object methods are also not pickleable, a
threaded program may require a more indirect design if it either runs bound methods
in its threads or implements thread exit actions by posting arbitrary callables (possibly
including bound methods) on shared queues. The in-process model of threads supports
such direct lambda and bound method use, but the separate processes of
multiprocessing do not.

In fact we’ll write a thread manager for GUIs in Chapter 10 that relies on queueing
in-process callables this way to implement thread exit actions—the callables are queued
by worker threads, and fetched and dispatched by the main thread. Because the
threaded PyMailGUI program we’ll code in Chapter 14 both uses this manager to queue
bound methods for thread exit actions and runs bound methods as the main action of
a thread itself, it could not be directly translated to the separate process model implied
by multiprocessing.

Without getting into too many details here, to use multiprocessing, PyMailGUI’s ac-
tions might have to be coded as simple functions or complete process subclasses for
pickleability. Worse, they may have to be implemented as simpler action identifiers
dispatched in the main process, if they update either the GUI itself or object state in
general —pickling results in an object copy in the receiving process, not a reference to
the original, and forks on Unix essentially copy an entire process. Updating the state
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of a mutable message cache copied by pickling it to pass to a new process, for example,
has no effect on the original.

The pickleability constraints for process arguments on Windows can limit
multiprocessing’s scope in other contexts as well. For instance, in Chapter 12, we’ll
find that this module doesn’t directly solve the lack of portability for the os.fork call
for traditionally coded socket servers on Windows, because connected sockets are not
pickled correctly when passed into a new process created by this module to converse
with a client. In this context, threads provide a more portable and likely more efficient
solution.

Applications that pass simpler types of messages, of course, may fare better. Message
constraints are easier to accommodate when they are part of an initial process-based
design. Moreover, other tools in this module, such as its managers and shared memory
API, while narrowly focused and not as general as shared thread state, offer additional
mutable state options for some programs.

Fundamentally, though, because multiprocessing is based on separate processes, it
may be best geared for tasks which are relatively independent, do not share mutable
object state freely, and can make do with the message passing and shared memory tools
provided by this module. This includes many applications, but this module is not nec-
essarily a direct replacement for every threaded program, and it is not an alternative to
process forks in all contexts.

To truly understand both this module package’s benefits, as well as its tradeoffs, let’s
turn to a first example and explore this package’s implementation along the way.

The Basics: Processes and Locks

We don’t have space to do full justice to this sophisticated module in this book; see its
coverage in the Python library manual for the full story. But as a brief introduction, by
design most of this module’s interfaces mirror the threading and queue modules we’ve
already met, so they should already seem familiar. For example, the multiprocessing
module’s Process class is intended to mimic the threading module’s Thread class we
met earlier—it allows us to launch a function call in parallel with the calling script;
with this module, though, the function runs in a process instead of a thread. Exam-
ple 5-29 illustrates these basics in action:

Example 5-29. PP4E\System\Processes\multil.py

nnn

multiprocess basics: Process works like threading.Thread, but

runs function call in parallel in a process instead of a thread;
locks can be used to synchronize, e.g. prints on some platforms;
starts new interpreter on windows, forks a new process on unix;

import os
from multiprocessing import Process, Lock
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def whoami(label, lock):
msg = '%s: name:%s, pid:%s’
with lock:
print(msg % (label, _name__, os.getpid()))

if __name__ == main__ ':

Tock = Lock()
whoami('function call', lock)

p = Process(target=whoami, args=('spawned child', lock))
p.start()
p.join()
for i in range(5):
Process(target=whoami, args=(('run process %s' % i), lock)).start()

with lock:
print('Main process exit.')

When run, this script first calls a function directly and in-process; then launches a call
to that function in a new process and waits for it to exit; and finally spawns five function
call processes in parallel in a loop—all using an API identical to that of the
threading.Thread model we studied earlier in this chapter. Here’s this script’s output
on Windows; notice how the five child processes spawned at the end of this script
outlive their parent, as is the usual case for processes:

C:\...\PP4E\System\Processes> multii.py

function call: name:__main__, pid:8752

spawned child: name:_main__, pid:9268
Main process exit.

run process 3: name:__main__, pid:9296
run process 1: name:__main__, pid:8792
run process 4: name:_main__, pid:2224
run process 2: name:_main__, pid:8716
run process 0: name:__main__, pid:6936

Just like the threading.Thread class we met earlier, the multiprocessing.Process object
can either be passed a target with arguments (as done here) or subclassed to redefine
its run action method. Its start method invokes its run method in a new process, and
the default run simply calls the passed-in target. Also like threading, a join method
waits for child process exit, and a Lock object is provided as one of a handful of process
synchronization tools; it’s used here to ensure that prints don’t overlap among pro-
cesses on platforms where this might matter (it may not on Windows).

Implementation and usage rules

Technically, to achieve its portability, this module currently works by selecting from
platform-specific alternatives:

* On Unix, it forks a new child process and invokes the Process object’s run method
in the new child.
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On Windows, it spawns a new interpreter by using Windows-specific process cre-
ation tools, passing the pickled Process object in to the new process over a pipe,
and starting a “python -¢” command line in the new process, which runs a special
Python-coded function in this package that reads and unpickles the Process and
invokes its run method.

We met pickling briefly in Chapter 1, and we will study it further later in this book.
The implementation is a bit more complex than this, and is prone to change over time,
of course, but it’s really quite an amazing trick. While the portable API generally hides
these details from your code, its basic structure can still have subtle impacts on the way
you’re allowed to use it. For instance:

On Windows, the main process’s logic should generally be nested undera __name__
== _main__test as done here when using this module, so it can be imported freely
by a new interpreter without side effects. As we’ll learn in more detail in Chap-
ter 17, unpickling classes and functions requires an import of their enclosing mod-
ule, and this is the root of this requirement.

Moreover, when globals are accessed in child processes on Windows, their values
may not be the same as that in the parent at start time, because their module will
be imported into a new process.

Also on Windows, all arguments to Process must be pickleable. Because this in-
cludes target, targets should be simple functions so they can be pickled; they can-
not be bound or unbound object methods and cannot be functions created with a
lambda. See pickle in Python’s library manual for more on pickleability rules;
nearly every object type works, but callables like functions and classes must be
importable—they are pickled by name only, and later imported to recreate byte-
code. On Windows, objects with system state, such as connected sockets, won’t
generally work as arguments to a process target either, because they are not
pickleable.

Similarly, instances of custom Process subclasses must be pickleable on Windows
as well. This includes all their attribute values. Objects available in this package
(e.g., Lock in Example 5-29) are pickleable, and so may be used as both Process
constructor arguments and subclass attributes.

IPC objects in this package that appear in later examples like Pipe and Queue accept
only pickleable objects, because of their implementation (more on this in the next
section).

On Unix, although a child process can make use of a shared global item created in
the parent, it’s better to pass the object as an argument to the child process’s con-
structor, both for portability to Windows and to avoid potential problems if such
objects were garbage collected in the parent.

There are additional rules documented in the library manual. In general, though, if you
stick to passing in shared objects to processes and using the synchronization and
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communication tools provided by this package, your code will usually be portable and
correct. Let’s look next at a few of those tools in action.

IPCTools: Pipes, Shared Memory, and Queues

While the processes created by this package can always communicate using general
system-wide tools like the sockets and fifo files we met earlier, the multiprocessing
module also provides portable message passing tools specifically geared to this purpose
for the processes it spawns:

* Its Pipe object provides an anonymous pipe, which serves as a connection between
two processes. When called, Pipe returns two Connection objects that represent the
ends of the pipe. Pipes are bidirectional by default, and allow arbitrary pickleable
Python objects to be sent and received. On Unix they are implemented internally
today with either a connected socket pair or the os.pipe call we met earlier, and
on Windows with named pipes specific to that platform. Much like the Process
object described earlier, though, the Pipe object’s portable API spares callers from
such things.

* Its Value and Array objects implement shared process/thread-safe memory for
communication between processes. These calls return scalar and array objects
based in the ctypes module and created in shared memory, with access synchron-
ized by default.

* Its Queue object serves as a FIFO list of Python objects, which allows multiple pro-
ducers and consumers. A queue is essentially a pipe with extra locking mechanisms
to coordinate more arbitrary accesses, and inherits the pickleability constraints of
Pipe.

Because these devices are safe to use across multiple processes, they can often serve to
synchronize points of communication and obviate lower-level tools like locks, much
the same as the thread queues we met earlier. As usual, a pipe (or a pair of them) may
be used to implement a request/reply model. Queues support more flexible models; in
fact, a GUI that wishes to avoid the limitations of the GIL might use the
multiprocessing module’s Process and Queue to spawn long-running tasks that post
results, rather than threads. As mentioned, although this may incur extra start-up
overhead on some platforms, unlike threads today, tasks coded this way can be as truly
parallel as the underlying platform allows.

One constraint worth noting here: this package’s pipes (and by proxy, queues) pickle
the objects passed through them, so that they can be reconstructed in the receiving
process (as we’ve seen, on Windows the receiver process may be a fully independent
Python interpreter). Because of that, they do not support unpickleable objects; as sug-
gested earlier, this includes some callables like bound methods and lambda functions
(see file multi-badq.py in the book examples package for a demonstration of code that
violates this constraint). Objects with system state, such as sockets, may fail as well.
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Most other Python object types, including classes and simple functions, work fine on

pipes and queues.

Also keep in mind that because they are pickled, objects transferred this way are effec-
tively copied in the receiving process; direct in-place changes to mutable objects’ state
won’t be noticed in the sender. This makes sense if you remember that this package
runs independent processes with their own memory spaces; state cannot be as freely
shared as in threading, regardless of which IPC tools you use.

multiprocessing pipes

To demonstrate the IPC tools listed above, the next three examples implement three
flavors of communication between parent and child processes. Example 5-30 uses a
simple shared pipe object to send and receive data between parent and child processes.

Example 5-30. PP4E\System\Processes\multi2.py

Use multiprocess anonymous pipes to communicate. Returns 2 connection
object representing ends of the pipe: objects are sent on one end and
received on the other, though pipes are bidirectional by default

nnn

import os
from multiprocessing import Process, Pipe

def sender(pipe):

nun

send object to parent on anonymous pipe
pipe.send(['spam'] + [42, 'eggs'])
pipe.close()

def talker(pipe):

nun

send and receive objects on a pipe
pipe.send(dict(name="'Bob"', spam=42))
reply = pipe.recv()

print('talker got:', reply)

if _name__ == '_main_':
(parentEnd, childEnd) = Pipe()
Process(target=sender, args=(childEnd,)).start()
print('parent got:', parentEnd.recv())
parentEnd.close()

(parentEnd, childEnd) = Pipe()

child = Process(target=talker, args=(childEnd,))
child.start()

print('parent got:', parentEnd.recv())
parentEnd.send({x * 2 for x in 'spam'})

# spawn child with pipe
# receive from child
# or auto-closed on gc

# receieve from child
# send to child
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child.join() # wait for child exit
print('parent exit')

When run on Windows, here’s this script’s output—one child passes an object to the
parent, and the other both sends and receives on the same pipe:
C:\...\PP4E\System\Processes> multi2.py
parent got: ['spam', 42, 'eggs']
parent got: {'name': 'Bob', 'spam': 42}
talker got: {'ss', 'aa', 'pp', 'mm'}
parent exit
This module’s pipe objects make communication between two processes portable (and
nearly trivial).

Shared memory and globals

Example 5-31 uses shared memory to serve as both inputs and outputs of spawned
processes. To make this work portably, we must create objects defined by the package
and pass them to Process constructors. The last test in this demo (“loop4”) probably
represents the most common use case for shared memory—that of distributing com-
putation work to multiple parallel processes.

Example 5-31. PP4E\System\Processes\multi3.py

Use multiprocess shared memory objects to communicate.
Passed objects are shared, but globals are not on Windows.
Last test here reflects common use case: distributing work.

import os
from multiprocessing import Process, Value, Array

procs = 3
count = 0 # per-process globals, not shared

def showdata(label, val, arr):

nun

print data values in this process
msg = '%-12s: pid:%4s, global:%s, value:%s, array:%s’
print(msg % (label, os.getpid(), count, val.value, list(arr)))

def updater(val, arr):

nun

communicate via shared memory

global count

count += 1 # global count not shared
val.value += 1 # passed in objects are
for i in range(3): arr[i] += 1

if _name__ == "'_main_':
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scalar
vector

Value('i', 0) # shared memory: process/thread safe
Array('d', procs) # type codes from ctypes: int, double

# show start value in parent process
showdata('parent start', scalar, vector)

# spawn child, pass in shared memory
p = Process(target=showdata, args=('child ', scalar, vector))

p.start(); p.join()

# pass in shared memory updated in parent, wait for each to finish
# each child sees updates in parent so far for args (but not global)

print('\nloop1 (updates in parent, serial children)...')
for i in range(procs):
count += 1
scalar.value += 1
vector[i] += 1
p = Process(target=showdata, args=(('process %s' % i), scalar, vector))
p.start(); p.join()

# same as prior, but allow children to run in parallel
# all see the last iteration's result because all share objects

print('\nloop2 (updates in parent, parallel children)...")

ps = []
for i in range(procs):
count += 1

scalar.value += 1

vector[i] += 1

p = Process(target=showdata, args=(('process %s' % i), scalar, vector))
p.start()

ps.append(p)
for p in ps: p.join()

# shared memory updated in spawned children, wait for each

print('\nloop3 (updates in serial children)...')

for i in range(procs):
p = Process(target=updater, args=(scalar, vector))
p.start()
p.join()

showdata('parent temp', scalar, vector)

# same, but allow children to update in parallel

ps = []
print('\nloop4 (updates in parallel children)...")
for i in range(procs):

p = Process(target=updater, args=(scalar, vector))

p.start()

ps.append(p)
for p in ps: p.join()

# global count=6 in parent only
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# show final results here # scalar=12: +6 parent, +6 in 6 children
showdata('parent end', scalar, vector) # array[i]=8: +2 parent, +6 in 6 children

The following is this script’s output on Windows. Trace through this and the code to
see how it runs; notice how the changed value of the global variable is not shared by
the spawned processes on Windows, but passed-in Value and Array objects are. The
final output line reflects changes made to shared memory in both the parent and
spawned children—the array’s final values are all 8.0, because they were incremented
twice in the par